

Announcements

- Project deadlines:
- Deadline 2 (22nd May) : Team members and team name, data description.
- Deadline 3 (29th May) : Electronic copy of your data, and a page of data description, and cleaning done, or needing to be done.
- Deadline 4 (5th June) : Final version of story board uploaded.
- Practical exam: DATE from 12pm-2pm
- Final Exam: I will provide a review of exam content

Quantitative association matrices

Previous association matrices were black and white:

Quantitative association matrices

- You could have the association between nodes described as real numbers.
- E.g., these are the number of times that these people called each other in the last week:

	Meg	Tay	Yat	Zili	Jess
Meg	0	5	4	1	1
Tay	5	0	4	2	1
Yat	4	4	0	0	0
Zili	1	2	0	0	6
Jess	1	1	0	6	0

Quantitative association matrices

We would need to turn this into an edge data set:

\#\# \#	A tibble: 25	x 3	
\#\#	from		to
\#\# count			

Quantitative association matrices

- We need to decide what corresponds to a "connection".
- Let's say they need to have called each other at least 4 times, to be considered connected.

```
d_edges_filter <- d_edges %>% filter(count > 3)
d_edges_filter
## # A tibble: 8 x 3
## from to count
## <chr> <chr> <dbl>
## 1 Tay Meg 5
## 2 Yat Meg 4
## 3 Meg Tay 5
## 4 Yat Tay 4
## 5 Meg Yat 4
## 6 Tay Yat 4
## 7 Jess Zili 6
## 8 Zili Jess 6
```


Association matrices: Make the network diagram.

```
library(geomnet)
set.seed(2020-05-09)
ggplot(data = d_edges_filter,
    aes(
        from_id = from,
        to_id = to)) +
geom_net(
    layout.alg = "kamadakawai",
    size = 3,
    labelon = TRUE,
    vjust = -0.6,
    ecolour = "grey60",
    directed =FALSE,
    fontsize = 4,
    ealpha = 0.5
    ) +
    theme_net()
```


Data: Last 4 months of currency USD cross-rates in 2018

SO let's try this with cross-currency rates across the globe!

- Data extracted from http://openexchangerates.org/
- Requires setting up a free account to get an API key
- R packages jsonlite, processed with tidyverse, lubridate

Data: Last 4 months of currency USD cross-rates in 2018

Your turn: Rstudio

Make some plots (or google) to answer these questions

- Is the NZD more similar to AUD, EUR, or JPY? (What currency is NZD?)
- Is SGD more similar to AUD, EUR, or JPY? (What currency is SGD?)
- How many currencies are there in the British Isles?

Pre-processing: Keep currencies that change

- Some currencies don't change very much.
- These should be filtered from the analysis, because in a study of currency movement, if it doesn't move then there is nothing more to be said.

Pre-processing: Keep currencies that change

- To filter out these currencies we use a statistic called coefficient of variation:

$$
\text { CoefVariation }=\frac{\sigma}{\mu}
$$

- Measures standard deviation of currency relative to the mean.
- For high means, we expect a currency to change more.
- That is, relatively the standard deviation would be larger to consider it to be changing.

Computing CV

Strategy pivot to long form then group and summarize currency values

```
# Compute coefficient of variation. We will only analyse
# currencies that have changes substantially over this time.
cv <- function(x){
    sd(x)/mean(x)
}
rates_cv <- rates %>%
    pivot_longer(cols = -date, names_to = "currency") %>%
    group_by(currency) %>%
    summarise(cv = cv(value))
```


Distrubtion of CV values

Identify currencies with CVs below the first quantile

```
rates_stable <- rates_cv %>%
filter(cv < quantile(cv, 0.25))
```


Filter out low cv currencies using pivot and an anti join

```
rates_sub <- rates %>%
    pivot_longer(cols = -date, names_to = "currency") %>%
    anti_join(rates_stable)
rates_sub
## # A tibble: 14,732 x 3
## date currency value
## <date> <chr> <dbl>
## 1 2018-05-14 AFN 71.2
## 2 2018-05-14 ALL 106.
## 3 2018-05-14 ANG 1.79
## 4 2018-05-14 AOA 230.
## 5 2018-05-14 ARS 25.0
## 6 2018-05-14 AUD 1.33
## 7 2018-05-14 BAM 1.63
## 8 2018-05-14 BDT 84.7
## 9 2018-05-14 BGN 1.64
## 10 2018-05-14 BIF 1767.
## # ... with 14,722 more rows
```


Remove currencies that are not currencies

Some of the currencies ... aren't really currencies. Google these ones: XAG, XDR, XPT - what are they?

Remove currencies that are not currencies

```
# Remove non-currencies
rates_dropped <- rates_sub %>%
    filter(!currency %in% c("ALL", "XAG", "XDR", "XPT"))
```

XAG is Gold XPT is Platinum XDR is special drawing rights

Standardize the currencies

[^0]
Rescale all values to have standardised values

Use group_by() plus mutate()!

rates_scaled <- rates_dropped \%>\%
group_by(currency) \%>\%
mutate(value = scale01(value))

Standardize the currencies

Compute distances between all pairs of currencies

Euclidean distance is used to compute similarity between all pairs of currencies.

$$
d_{i j}=\sqrt{\sum_{i=1}^{t}\left(C_{1 i}-C_{2 i}\right)^{2}}
$$

Compute distances between all pairs of currencies

We need to put our data back in wide form! And then turn it into a matrix.

```
rates_wide <- rates_scaled %>%
    pivot_wider(id_cols = "date", names_from = "currency") %>%
    select(-date)
# compute distance between currencies, rows <--> columns
rates_wide_t <- t(rates_wide)
```


Use built in function to compute distance

```
currency_dist <- as.matrix(dist(rates_wide_t,
diag = TRUE
upper = TRUE))
currency_dist[1:5, 1:5]
\#\# AFN ANG AOA ARS AUD
## AFN 0.000000 8.044527 7.315939 8.014165 7.970993
## ANG 8.044527 0.000000 5.628321 9.601101 7.277124
## AOA 7.315939 5.628321 0.000000 5.760894 5.299254
## ARS 8.014165 9.601101 5.760894 0.000000 5.983452
## AUD 7.970993 7.277124 5.299254 5.983452 0.000000
```


A note on distance matrices:

- A distance matrix is the inverse of an association matrix.
- A distance matrix close to 0 means the pair are most similar.
- For an association matrix far from zero means the pair are close.
- Either can be used to generate a network.

Create network: Pivot data into long form, filter based on similarity

Here only the pairs of currencies who are closer than " 4 " to each other are kept.

```
distance_tbl <- currency_dist %>%
    as.data.frame() %>%
    rownames_to_column(var = "from_currency") %>%
    pivot_longer(-from_currency,
        names_to = "to_currency",
        values_to = "distance") %>%
    filter(distance < 4 ) %>%
    filter(from_currency != to_currency)
```


Create network: Gather data into long form, filter based on

 similarityHere only the pairs of currencies who are closer than " 4 " to each other are kept.

```
distance_tbl
## # A tibble: 266 x 3
## from_currency to_currency distance
## <chr> <chr> <dbl>
## 1 ANG CNH 2.98
## 2 ANG CNY 3.24
## 3 ANG IRR 3.73
## 4 ANG TJS 3.60
## 5 ANG VND 3.42
## 6 AOA JMD 3.66
## 7 AOA KZT 2.11
## 8 AOA LAK 3.55
## 9 AOA MMK 2.19
## 10 AOA MYR 2.17
```

\#\# \# ... with 256 more rows

Network laid out

```
set.seed(10052016)
ggplot(data = distance_tbl,
    aes(
        from_id = from_currenc)
        to_id = to_currency
        )) +
geom_net(
    size = 3,
    labelon = TRUE,
    repel = TRUE,
    ecolour = "grey60",
    fontsize = 3,
    ealpha = 0.5
    ) +
    theme_net() +
    theme(
        legend.position = "bottom'
        )
```


Your turn

- Make a plot of the AUD vs the SGD (using the standardised units). Do they look like they are trending together as suggested by the network?
- Try out the remaining lab exercises

Flexdashboard

[demo]

Flexdasboard

Here is a list, in order of viewing.

1. Sharon Machlis: R language tip: Easy dashboards with flexdashboard https://www.youtube.com/watch?v=_oDfBVr9wmQ
2. Jonathan Ng 's series:

- 5 Minute Dashboard with R Shiny Flex Dashboards https://www.youtube.com/watch? $\mathrm{v}=45 \mathrm{~h} 71 \mathrm{BFbL1w}$: Getting set up with shiny, to have inputs and reactive plots. Uses an igraph example.
- Flexdashboard Cheat Sheet https://www.youtube.com/watch? $\mathrm{v}=\mathrm{g} \mathrm{kQ} \mathrm{vhMA} 24 \mathrm{ig}$: Layout explanations. Nice style of making changes and exploring the result
- Dyanmic Dashboard Filters with R, Shiny Flex Dashboards https://www.youtube.com/watch?v=MBNdyRQIvE4: Reasonable getting started with shiny elements.

Flexdashboard

1. Jonathan Ng 's series (continued):

- Build a Dashboard in 10 Seconds with R Shiny Flexdashboard https://www.youtube.com/watch?v=6WTaGEOVJ6s: Advanced R coding. Starts from a sample flexdashboard with inputs and reactives, and adds more advanced elements to it. (Follows Dyanmic Dashboard Filters with R, Shiny Flex Dashboards)
- Load R Shiny Flexdashboards Faster https://www.youtube.com/watch?v=M1fHf8PpX5E\&

A note on presenting your project

- We suggest making recording a group presentation with zoom, and uploading to youtube as an unlisted video
- Time limit of 5 minutes
- You can use basic software like Quicktime to trim the starts and ends of the videos
- I will post more details on how to post videos onto youtube soon.

[^0]: To examine overall trend regardless of actual USD cross rate, standardise the values to have mean 0 and standard deviation 1.
 scale01 <- function(x) (x - mean (x)) / sd(x)

