ETC1010: Introduction to Data Analysis Week 9, part B

Networks and Graphs

Lecturer: Nicholas Tierney Department of Econometrics and Business Statistics ✓ nicholas.tierney@monash.edu May 2020

Parkville campus Faculty of Pharmacey and Pharmaceutical

> Monash Institute of Pharmaceutical Sciences

> > Pharmaceutical Society of Australia Coccar Hall

Announcements

- Project deadlines:
 - **Deadline 2 (22nd May)** : Team members and team name, data description.
 - **Deadline 3 (29th May)** : Electronic copy of your data, and a page of data description, and cleaning done, or needing to be done.
 - **Deadline 4 (5th June)** : Final version of story board uploaded.
- Practical exam: DATE from 12pm 2pm
- Final Exam: I will provide a review of exam content

Previous association matrices were black and white:

- You could have the association between nodes described as real numbers.
- E.g., these are the number of times that these people called each other in the last week:

	Meg	Тау	Yat	Zili	Jess
Meg	0	5	4	1	1
Тау	5	0	4	2	1
Yat	4	4	0	0	0
Zili	1	2	0	0	6
Jess	1	1	0	6	0

We would need to turn this into an edge data set:

##	# A tibb.	le: 25 x	3
##	from	to c	ount
##	<chr></chr>	<chr> <</chr>	dbl>
##	1 Meg	Meg	0
##	2 Tay	Meg	5
##	3 Yat	Meg	4
##	4 Zili	Meg	1
##	5 Jess	Meg	1
##	6 Meg	Тау	5
##	7 Tay	Tay	0
##	8 Yat	Тау	4
##	9 Zili	Тау	2
##	10 Jess	Тау	1
##	# with	15 more	rows

- We need to decide what corresponds to a "connection".
- Let's say they need to have called each other at least 4 times, to be considered connected.

d_e	edg	ges_fi	lter <	- d_edges	%>%	filter(count	>	3)
d_e	edg	ges_fi	lter					
##	#	A tib	ble: 8	х З				
##		from	to	count				
##		<chr></chr>	<chr></chr>	<dbl></dbl>				
##	1	Tay	Meg	5				
##	2	Yat	Meg	4				
##	3	Meg	Tay	5				
##	4	Yat	Tay	4				
##	5	Meg	Yat	4				
##	6	Tay	Yat	4				
##	7	Jess	Zili	6				
##	8	Zili	Jess	6				

Association matrices: Make the network diagram.

```
library(geomnet)
set.seed(2020-05-09)
gqplot(data = d_edges_filter,
       aes(
         from_id = from,
         to_id = to)) +
  geom_net(
    layout.alg = "kamadakawai",
    size = 3,
    labelon = TRUE,
    vjust = -0.6,
    ecolour = "grey60",
    directed =FALSE,
    fontsize = 4,
    ealpha = 0.5
    ) +
    theme_net()
```


Data: Last 4 months of currency USD cross-rates in 2018

SO let's try this with cross-currency rates across the globe!

- Data extracted from http://openexchangerates.org/
- Requires setting up a free account to get an API key
- R packages jsonlite, processed with tidyverse, lubridate

Data: Last 4 months of currency USD cross-rates in 2018

A tibble: 6 x 171

##		date	AED	AFN	ALL	AMD	ANG	AOA	ARS	AUD	AWG	AZN	BAM	BB
##		<date></date>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl< td=""></dbl<>
##	1	2018-05-14	3.67	71.2	106.	485.	1.79	230.	25.0	1.33	1.79	1.70	1.63	
##	2	2018-05-15	3.67	71.2	107.	485.	1.80	230.	24.1	1.34	1.79	1.70	1.64	
##	3	2018-05-16	3.67	71.0	108.	484.	1.80	232.	24.3	1.33	1.79	1.70	1.66	
##	4	2018-05-17	3.67	71.0	108.	483.	1.80	233.	24.3	1.33	1.79	1.70	1.66	
##	5	2018-05-18	3.67	71.0	108.	483.	1.80	233.	24.4	1.33	1.79	1.70	1.66	
##	6	2018-05-19	3.67	70.9	108.	482.	1.79	233.	24.4	1.33	1.79	1.70	1.66	
##	#	with 158	more	/ariabl	es: Bl	DT <db< td=""><td>l>, BGI</td><td>V <dbl< td=""><td>>, BHD</td><td><dbl>,</dbl></td><td>BIF <</td><td><dbl>,</dbl></td><td>BMD <</td><td>dbl>,</td></dbl<></td></db<>	l>, BGI	V <dbl< td=""><td>>, BHD</td><td><dbl>,</dbl></td><td>BIF <</td><td><dbl>,</dbl></td><td>BMD <</td><td>dbl>,</td></dbl<>	>, BHD	<dbl>,</dbl>	BIF <	<dbl>,</dbl>	BMD <	dbl>,
##	#	BND <dbl></dbl>	>, BOB	<dbl>,</dbl>	BRL «	<dbl>,</dbl>	BSD <a< td=""><td>dbl>, I</td><td>BTC <dl< td=""><td>bl>, B7</td><td>N <db]< td=""><td>l>, BWA</td><td>o <dbl></dbl></td><td>>,</td></db]<></td></dl<></td></a<>	dbl>, I	BTC <dl< td=""><td>bl>, B7</td><td>N <db]< td=""><td>l>, BWA</td><td>o <dbl></dbl></td><td>>,</td></db]<></td></dl<>	bl>, B7	N <db]< td=""><td>l>, BWA</td><td>o <dbl></dbl></td><td>>,</td></db]<>	l>, BWA	o <dbl></dbl>	>,
##	#	BYN <dbl></dbl>	>, BZD	<dbl>,</dbl>	CAD <	<dbl>,</dbl>	CDF <d< td=""><td>dbl>, (</td><td>CHF <dl< td=""><td>bl>, CL</td><td>F <db1< td=""><td>l>, CLF</td><td>o <dbl></dbl></td><td>>,</td></db1<></td></dl<></td></d<>	dbl>, (CHF <dl< td=""><td>bl>, CL</td><td>F <db1< td=""><td>l>, CLF</td><td>o <dbl></dbl></td><td>>,</td></db1<></td></dl<>	bl>, CL	F <db1< td=""><td>l>, CLF</td><td>o <dbl></dbl></td><td>>,</td></db1<>	l>, CLF	o <dbl></dbl>	>,
##	#	CNH <dbl></dbl>	>, CNY	<dbl>,</dbl>	COP <	<dbl>,</dbl>	CRC <d< td=""><td>dbl>, (</td><td>CUC <dl< td=""><td>bl>, Cl</td><td>JP <db3< td=""><td>l>, CVE</td><td>= <dbl></dbl></td><td>>,</td></db3<></td></dl<></td></d<>	dbl>, (CUC <dl< td=""><td>bl>, Cl</td><td>JP <db3< td=""><td>l>, CVE</td><td>= <dbl></dbl></td><td>>,</td></db3<></td></dl<>	bl>, Cl	JP <db3< td=""><td>l>, CVE</td><td>= <dbl></dbl></td><td>>,</td></db3<>	l>, CVE	= <dbl></dbl>	>,
##	#	CZK <dbl></dbl>	>, DJF	<dbl>,</dbl>	DKK «	<dbl>,</dbl>	DOP <0	dbl>,	DZD <dl< td=""><td>bl>, E0</td><td>GP <db1< td=""><td>l>, ERI</td><td>V <dbl></dbl></td><td>>,</td></db1<></td></dl<>	bl>, E0	GP <db1< td=""><td>l>, ERI</td><td>V <dbl></dbl></td><td>>,</td></db1<>	l>, ERI	V <dbl></dbl>	>,
##	#	ETB <dbl></dbl>	>, EUR	<dbl>,</dbl>	FJD «	<dbl>,</dbl>	FKP <c< td=""><td>dbl>, (</td><td>GBP <dl< td=""><td>51>, GE</td><td>EL <db]< td=""><td>l>, GGP</td><td>> <dbl></dbl></td><td>>,</td></db]<></td></dl<></td></c<>	dbl>, (GBP <dl< td=""><td>51>, GE</td><td>EL <db]< td=""><td>l>, GGP</td><td>> <dbl></dbl></td><td>>,</td></db]<></td></dl<>	51>, GE	EL <db]< td=""><td>l>, GGP</td><td>> <dbl></dbl></td><td>>,</td></db]<>	l>, GGP	> <dbl></dbl>	>,
##	#	GHS <dbl></dbl>	>, GIP	<dbl>,</dbl>	GMD <	<dbl>,</dbl>	GNF <c< td=""><td>dbl>, (</td><td>GTQ <dl< td=""><td>51>, GY</td><td>′D <db]< td=""><td>l>, HKL</td><td>) <dbl></dbl></td><td>>,</td></db]<></td></dl<></td></c<>	dbl>, (GTQ <dl< td=""><td>51>, GY</td><td>′D <db]< td=""><td>l>, HKL</td><td>) <dbl></dbl></td><td>>,</td></db]<></td></dl<>	51>, GY	′D <db]< td=""><td>l>, HKL</td><td>) <dbl></dbl></td><td>>,</td></db]<>	l>, HKL) <dbl></dbl>	>,
##	#	HNL <dbl></dbl>	>, HRK	<dbl>,</dbl>	HTG «	<dbl>,</dbl>	HUF <d< td=""><td>dbl>, .</td><td>IDR <dl< td=""><td>ol>, Il</td><td>_S <db]< td=""><td>l>, IMP</td><td>> <dbl></dbl></td><td>>,</td></db]<></td></dl<></td></d<>	dbl>, .	IDR <dl< td=""><td>ol>, Il</td><td>_S <db]< td=""><td>l>, IMP</td><td>> <dbl></dbl></td><td>>,</td></db]<></td></dl<>	ol>, Il	_S <db]< td=""><td>l>, IMP</td><td>> <dbl></dbl></td><td>>,</td></db]<>	l>, IMP	> <dbl></dbl>	>,
##	#	INR <dbl></dbl>	>, IQD	<dbl>,</dbl>	IRR «	<dbl>,</dbl>	ISK <d< td=""><td>dbl>, .</td><td>JEP <dl< td=""><td>bl>, JN</td><td>1D <db3< td=""><td>l>, JOL</td><td>) <dbl></dbl></td><td>>,</td></db3<></td></dl<></td></d<>	dbl>, .	JEP <dl< td=""><td>bl>, JN</td><td>1D <db3< td=""><td>l>, JOL</td><td>) <dbl></dbl></td><td>>,</td></db3<></td></dl<>	bl>, JN	1D <db3< td=""><td>l>, JOL</td><td>) <dbl></dbl></td><td>>,</td></db3<>	l>, JOL) <dbl></dbl>	>,
##	#	JPY <dbl></dbl>	>, KES	<dbl>,</dbl>	KGS <	<dbl>,</dbl>	KHR <	dbl>,	KMF <dl< td=""><td>ol>, KF</td><td>PW <db1< td=""><td>l>, KRV</td><td>V <dbl></dbl></td><td>>,</td></db1<></td></dl<>	ol>, KF	PW <db1< td=""><td>l>, KRV</td><td>V <dbl></dbl></td><td>>,</td></db1<>	l>, KRV	V <dbl></dbl>	>,
##	#	KWD <dbl></dbl>	>, KYD	<db1>,</db1>	KZT <	<dbl>,</dbl>	LAK <d< td=""><td>dbl>,</td><td>LBP <dl< td=""><td>51>, LH</td><td>(R <db]< td=""><td>l>, LRI</td><td>) <dbl></dbl></td><td>> ,</td></db]<></td></dl<></td></d<>	dbl>,	LBP <dl< td=""><td>51>, LH</td><td>(R <db]< td=""><td>l>, LRI</td><td>) <dbl></dbl></td><td>> ,</td></db]<></td></dl<>	51>, LH	(R <db]< td=""><td>l>, LRI</td><td>) <dbl></dbl></td><td>> ,</td></db]<>	l>, LRI) <dbl></dbl>	> ,

9/35

Data: Last 4 months of currency USD cross-rates in 2018

Your turn: Rstudio

Make some plots (or google) to answer these questions

- Is the NZD more similar to AUD, EUR, or JPY? (What currency is NZD?)
- Is SGD more similar to AUD, EUR, or JPY? (What currency is SGD?)
- How many currencies are there in the British Isles?

Pre-processing: Keep currencies that change

- Some currencies don't change very much.
- These should be filtered from the analysis, because in a study of currency movement, if it doesn't move then there is nothing more to be said.

Pre-processing: Keep currencies that change

 To filter out these currencies we use a statistic called <u>coefficient of</u> <u>variation</u>:

$$CoefVariation = \frac{\sigma}{\mu}$$

- Measures standard deviation of currency relative to the mean.
- For high means, we expect a currency to change more.
- That is, relatively the standard deviation would be larger to consider it to be changing.

Computing CV

Strategy pivot to long form then group and summarize currency values

```
# Compute coefficient of variation. We will only analyse
# currencies that have changes substantially over this time.
cv <- function(x){
   sd(x)/mean(x)
}
rates_cv <- rates %>%
   pivot_longer(cols = -date, names_to = "currency") %>%
   group_by(currency) %>%
   summarise(cv = cv(value))
```

Distrubtion of CV values

Identify currencies with CVs below the first quantile

rates_stable <- rates_cv %>%
filter(cv < quantile(cv, 0.25))</pre>

Filter out low cv currencies using pivot and an anti join

```
rates_sub <- rates %>%
 pivot_longer(cols = -date, names_to = "currency") %>%
 anti_join(rates_stable)
rates_sub
## # A tibble: 14,732 x 3
## date currency value
## <date> <chr> <dbl>
  1 2018-05-14 AFN 71.2
##
   2 2018-05-14 ALL 106.
##
##
   3 2018-05-14 ANG 1.79
##
   4 2018-05-14 AOA 230.
##
   5 2018-05-14 ARS 25.0
##
   6 2018-05-14 AUD 1.33
##
  7 2018-05-14 BAM
                 1.63
##
  8 2018-05-14 BDT
                 84.7
##
   9 2018-05-14 BGN 1.64
  10 2018-05-14 BIF 1767.
##
## # ... with 14,722 more rows
```

Remove currencies that are not currencies

Some of the currencies ... aren't really currencies. Google these ones: XAG, XDR, XPT - what are they?

Remove currencies that are not currencies

Remove non-currencies

rates_dropped <- rates_sub %>%
filter(!currency %in% c("ALL", "XAG", "XDR", "XPT"))

XAG is Gold XPT is Platinum XDR is special drawing rights

Standardize the currencies

To examine overall trend regardless of actual USD cross rate, standardise the values to have mean 0 and standard deviation 1.

scale01 <- function(x) (x - mean(x)) / sd(x)</pre>

Rescale all values to have standardised values

Use group_by() plus mutate()!

rates_scaled <- rates_dropped %>%
group_by(currency) %>%
mutate(value = scale01(value))

Standardize the currencies

Compute distances between all pairs of currencies

Euclidean distance is used to compute similarity between all pairs of currencies.

$$d_{ij} = \sqrt{\sum_{i=1}^{t} (C_{1i} - C_{2i})^2}$$

Compute distances between all pairs of currencies

We need to put our data back in wide form! And then turn it into a matrix.

```
rates_wide <- rates_scaled %>%
    pivot_wider(id_cols = "date", names_from = "currency") %>%
    select(-date)
```

```
# compute distance between currencies, rows <--> columns
rates_wide_t <- t(rates_wide)</pre>
```

Use built in function to compute distance

currency_dist <- as.matrix(dist(rates_wide_t,</pre>

diag = TRUE, upper = TRUE))

currency_dist[1:5, 1:5]

##AFNANGAOAARSAUD##AFN0.000008.0445277.3159398.0141657.970993##ANG8.0445270.0000005.6283219.6011017.277124##AOA7.3159395.6283210.0000005.7608945.299254##ARS8.0141659.6011015.7608940.0000005.983452##AUD7.9709937.2771245.2992545.9834520.000000

A note on distance matrices:

- A distance matrix is the inverse of an association matrix.
- A distance matrix close to 0 means the pair are most similar.
- For an association matrix far from zero means the pair are close.
- Either can be used to generate a network.

Create network: Pivot data into long form, filter based on similarity

Here only the pairs of currencies who are closer than "4" to each other are kept.

Create network: Gather data into long form, filter based on similarity

Here only the pairs of currencies who are closer than "4" to each other are kept.

distance_tbl

##	# A tibbl	le: 266 x 3	
##	from_c	currency to_currency	distance
##	<chr></chr>	<chr></chr>	<dbl></dbl>
##	1 ANG	CNH	2.98
##	2 ANG	CNY	3.24
##	3 ANG	IRR	3.73
##	4 ANG	TJS	3.60
##	5 ANG	VND	3.42
##	6 A0A	JMD	3.66
##	7 A0A	KZT	2.11
##	8 A0A	LAK	3.55
##	9 AOA	ММК	2.19
##	10 AOA	MYR	2.17
##	# with	256 more rows	

Network laid out

```
set.seed(10052016)
ggplot(data = distance_tbl,
       aes(
         from_id = from_currency
         to_id = to_currency
         )) +
  geom_net(
    size = 3,
    labelon = TRUE,
    repel = TRUE,
    ecolour = "grey60",
    fontsize = 3,
    ealpha = 0.5
    ) +
    theme_net() +
    theme(
      legend.position = "bottom'
```


Your turn

- Make a plot of the AUD vs the SGD (using the standardised units). Do they look like they are trending together as suggested by the network?
- Try out the remaining lab exercises

Flexdashboard

[demo]

Flexdasboard

Here is a list, in order of viewing.

- Sharon Machlis: R language tip: Easy dashboards with flexdashboard <u>https://www.youtube.com/watch?v=_oDfBVr9wmQ</u>
- 2. Jonathan Ng's series:
 - 5 Minute Dashboard with R Shiny Flex Dashboards <u>https://www.youtube.com/watch?v=45h71BFbL1w</u>: Getting set up with shiny, to have inputs and reactive plots. Uses an igraph example.
 - Flexdashboard Cheat Sheet <u>https://www.youtube.com/watch?</u>
 <u>v=gkQvhMA24ig</u>: Layout explanations. Nice style of making changes and exploring the result
 - Dyanmic Dashboard Filters with R, Shiny Flex Dashboards <u>https://www.youtube.com/watch?v=MBNdyRQIvE4</u>: Reasonable getting started with shiny elements.

Flexdashboard

- 1. Jonathan Ng's series (continued):
- Build a Dashboard in 10 Seconds with R Shiny Flexdashboard <u>https://www.youtube.com/watch?v=6WTaGEOVJ6s</u>: Advanced R coding. Starts from a sample flexdashboard with inputs and reactives, and adds more advanced elements to it. (Follows Dyanmic Dashboard Filters with R, Shiny Flex Dashboards)
- Load R Shiny Flexdashboards Faster <u>https://www.youtube.com/watch?v=MlfHf8PpX5E&</u>

A note on presenting your project

- We suggest making recording a group presentation with zoom, and uploading to youtube as an unlisted video
- Time limit of 5 minutes
- You can use basic software like Quicktime to trim the starts and ends of the videos
- I will post more details on how to post videos onto youtube soon.