

Announcements

- Project deadlines:
- Deadline 2 (22nd May) : Team members and team name, data description.
- Deadline 3 (29th May) : Electronic copy of your data, and a page of data description, and cleaning done, or needing to be done.
- Practical exam.

recap: Last week on tidy text data

Network analysis

A description of phone calls

- Johnny --> Liz
- Liz --> Anna
- Johnny -- > Dan
- Dan --> Liz
- Dan --> Lucy

Anna

And as an association matrix

[DEMO]

Why care about these relationships?

- Telephone exchanges: Nodes are the phone numbers. Edges would indicate a call was made betwen two numbers.
- Book or movie plots: Nodes are the characters. Edges would indicate whether they appear together in a scene, or chapter. If they speak to each other, various ways we might measure the association.
- Social media: nodes would be the people who post on facebook, including comments. Edges would measure who comments on who's posts.

Drawing these relationships out:

One way to describe these relationships is to provide association matrix between many objects.

Adjacency Matrix Visualization

(Image created by Sam Tyner.)

Example: Madmen

Generate a network view

- Create a layout (in 2D) which places nodes which are most related close,
- Plot the nodes as points, connect the appropriate lines
- Overlaying other aspects, e.g. gender

introducing madmen data

```
glimpse(madmen)
## List of 2
## $ edges :'data.frame': 39 obs. of 2 variables:
## ..S Name1: Factor w/ 9 levels "Betty Draper",..: 1 1 2 2 2 2 2 2 2 2
## ..$ Name2: Factor w/ 39 levels "Abe Drexler",..: 15 31 2 4 5 6 8 9 11 21
## $ vertices:'data.frame': 45 obs. of 2 variables:
## ..S label : Factor w/ 45 levels "Abe Drexler",..: 5 9 16 23 26 32 33 38 39 17 ...
## ..$ Gender: Factor w/ 2 levels "female","male": 1 2 2 1 2 1 2 2 2 2 ...
```


Nodes and edges?

Netword data can be thought of as two related tables, nodes and edges:

- nodes are connection points
- edges are the connections between points

Example: Mad Men. (Nodes = characters from the series)

madmen_nodes

\#\#		label	gender
\#\#		<chr>	<chr>
\#	1	Betty Draper	female
\#\#	2	Don Draper	male
\#\#	3	Harry Crane	male
\#\#	4	Joan Holloway	female
\#\#	5	Lane Pryce	male
\#\#	6	Peggy Olson	female
\#\#	7	Pete Campbell	male
\#\#	8	Roger Sterling	male
\#\#	9	Sal Romano	male
	10	Henry Francis	male
		with 35 mor	

Example: Mad Men. (Edges = how they are associated)

madmen_edges

```
## # A tibble: 39 x 2
## Name1 Name2
## <chr> <chr>
## 1 Betty Draper Henry Francis
## 2 Betty Draper Random guy
## 3 Don Draper Allison
## 4 Don Draper Bethany Van Nuys
## 5 Don Draper Betty Draper
## 6 Don Draper Bobbie Barrett
## 7 Don Draper Candace
## 8 Don Draper Doris
## 9 Don Draper Faye Miller
## 10 Don Draper Joy
## # ... with 29 more rows
```


Let's get the madmen data into the right shape

```
madmen_edges %>%
    rename(from_id = Name1, to_id = Name2)
## # A tibble: 39 x 2
## from_id to_id
## <chr> <chr>
## 1 Betty Draper Henry Francis
## 2 Betty Draper Random guy
## 3 Don Draper Allison
## 4 Don Draper Bethany Van Nuys
## 5 Don Draper Betty Draper
## 6 Don Draper Bobbie Barrett
## 7 Don Draper Candace
## 8 Don Draper Doris
## 9 Don Draper Faye Miller
# 10 Don Draper Joy
## # ... with 29 more rows
```


Let's get the madmen data into the right shape

```
madmen_net <- madmen_edges %>%
    rename(from_id = Name1, to_id = Name2) %>%
    full_join(madmen_nodes,
    by = c("from_id" = "label"))
```

madmen_net

Full join?
full_join(x, y)

Plotting the data with geomnet

Aside: Installing geomnet

```
install.packages("remotes")
library (remotes)
install_github("sctyner/geomnet")
```

This is the code you will need to use to install it:

How to plot
set.seed(5556677)
ggplot(data = madmen_net, aes(from_id = from_id, to_id = to_id)) + geom_net(aes(colour = gender)

How to plot: specify the layout algorithm

```
set.seed(5556677)
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = gender),
    layout.alg = "kamadak
```


How to plot: Try different layout algorithms

Follow links in ?geom_net for more examples:

```
set.seed(5556677)
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = gender)
    layout.alg = "frucht\epsilon
```


How to plot: Try different layout algorithms

Follow links in ?geom_net for more examples:

```
set.seed(5556677)
ggplot(data = madmen_net,
\[
\begin{gathered}
\text { aes }(\text { from_id }=\text { from_id, } \\
\text { to_id }=\text { to_id)) }+
\end{gathered}
\]
geom_net(aes(colour = gender)
layout.alg = "target'
```


How to plot: Try different layout algorithms

Follow links in ?geom_net for more examples:

```
set.seed(5556677)
ggplot(data = madmen_net,
\[
\begin{gathered}
\text { aes }(\text { from_id }=\text { from_id, } \\
\text { to_id }=\text { to_id)) }+
\end{gathered}
\]
geom_net(aes(colour = gender)
layout.alg = "circle'
```


How to plot: Add some labs and decrease font

```
set.seed(5556677)
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = gender),
    layout.alg = "kamadar
    directed = FALSE,
    labelon = TRUE,
    fontsize = 3)
```


How to plot: Change edge colour/size

```
set.seed(5556677)
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = gender),
    layout.alg = "kamadak
    directed = FALSE,
    labelon = TRUE,
    fontsize = 3,
    size = 2,
    vjust = -0.6,
    ecolour = "grey60",
    ealpha = 0.5)
```


How to plot: Add colours + theme

```
set.seed(5556677)
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = gender),
            layout.alg = "kamadar
            directed = FALSE,
            labelon = TRUE,
            fontsize = 3,
            size = 2,
            vjust = -0.6,
            ecolour = "grey60",
            ealpha = 0.5) +
scale_colour_manual(
    values = c("#FF69B4", "#06
    )
```


How to plot: Add theme + move legend

```
set.seed(5556677)
gg_madmen_net <-
ggplot(data = madmen_net,
    aes(from_id = from_id,
        to_id = to_id)) +
    geom_net(aes(colour = gender),
        layout.alg = "kamadal
        directed = FALSE,
        labelon = TRUE,
        fontsize = 3,
            size = 2,
            vjust = -0.6,
            ecolour = "grey60",
            ealpha = 0.5) +
        scale_colour_manual(values =
    theme_net() +
    theme(legend.position = "bottc
gg_madmen_net
```

 gender \(\searrow\) female \(\searrow\) male

Which character was most connected?

madmen_edges

```
## # A tibble: 39 x 2
## Name1 Name2
## <chr> <chr>
## 1 Betty Draper Henry Francis
## 2 Betty Draper Random guy
## 3 Don Draper Allison
## 4 Don Draper Bethany Van Nuys
## 5 Don Draper Betty Draper
## 6 Don Draper Bobbie Barrett
## 7 Don Draper Candace
## 8 Don Draper Doris
## 9 Don Draper Faye Miller
## 10 Don Draper Joy
## # ... with 29 more rows
```


Which character was most connected?

```
madmen_edges %>%
    pivot_longer(cols = c(Name1, Name2),
        names_to = "List",
            values_to = "Name")
## # A tibble: 78 x 2
## List Name
## <chr> <chr>
## 1 Name1 Betty Draper
## 2 Name2 Henry Francis
## 3 Name1 Betty Draper
## 4 Name2 Random guy
## 5 Name1 Don Draper
## 6 Name2 Allison
## 7 Name1 Don Draper
## 8 Name2 Bethany Van Nuys
## 9 Name1 Don Draper
## 10 Name2 Betty Draper
## # ... with 68 more rows
```


Which character was most connected?

```
madmen_edges %>%
    pivot_longer(cols = c(Name1, Name2),
        names_to = "List",
        values_to = "Name") %>%
    count(Name, sort = TRUE)
## # A tibble: 45 x 2
## Name n
    <chr> <int>
    1 Don Draper 14
    2 Roger Sterling 6
    3 Peggy Olson 5
    4 Pete Campbell 4
    5 Betty Draper 3
    6 Joan Holloway 3
    7 Lane Pryce 3
    8 Harry Crane 2
    9 Sal Romano 2
## 10 Abe Drexler 1
## # ... with 35 more rows
```

Which character was most connected?

What do we learn?

- Joan Holloway had a lot of affairs, all with loyal partners except for his wife Betty, who had two affairs herself
- Followed by Woman at Clios party

Your Turn:

- Open 9a-madmen.Rmd
- Replicate the plots used in the lecture
- Explore a few different layout algorithms

Example: American college football

Early American football outfits were like Australian AFL today!

Source: wikicommons

Example: American college football

Fall 2000 Season of Division I college football.

- Nodes are the teams, edges are the matches.
- Teams are broken into "conferences" which are the primary competition, but they can play outside this group.

American college football data: Edges

football_edges

American college football data: Nodes

football_nodes

```
## # A tibble: 115 x 2
## label value
## <chr> <chr>
## 1 BrighamYoung Mountain West
## 2 FloridaState Atlantic Coast
## 3 Iowa Big Ten
## 4 KansasState Big Twelve
## 5 NewMexico Mountain West
## 6 TexasTech Big Twelve
## 7 PennState Big Ten
## 8 SouthernCalifornia Pacific Ten
## 9 ArizonaState Pacific Ten
## 10 SanDiegoState Mountain West
## # ... with 105 more rows
```

```
# data step: merge vertices and edges
ftnet <- full_join(football_edges,
                            football_nodes,
                            by = c("from" = "label")) %>%
    mutate(schools = if_else(value == "Independents", from, ""))
ftnet
## # A tibble: 621 x 6
\#\# from to
## <chr> <chr>
## 1 BrighamYoung FloridaState
## 2 Iowa KansasState
## 3 BrighamYoung NewMexico
## 4 NewMexico TexasTech
## 5 KansasState TexasTech
## 6 Iowa PennState
## }7\mathrm{ PennState SouthernCalifornia
## 8 ArizonaState SouthernCalifornia
## 9 ArizonaState SanDiegoState
## 10 BrighamYoung SanDiegoState
```

```
same.conf intriad value schools
```

same.conf intriad value schools
<dbl> <lgl> <chr> <chr>
<dbl> <lgl> <chr> <chr>
0 TRUE Mountain West ""
0 TRUE Mountain West ""
0 TRUE Big Ten ""
0 TRUE Big Ten ""
1 TRUE Mountain West
1 TRUE Mountain West
0 FALSE Mountain West ""
0 FALSE Mountain West ""
1 TRUE Big Twelve ""
1 TRUE Big Twelve ""
1 TRUE Big Ten ""
1 TRUE Big Ten ""
0 FALSE Big Ten ""
0 FALSE Big Ten ""
1 TRUE Pacific Ten ""
1 TRUE Pacific Ten ""
0 TRUE Pacific Ten ""
0 TRUE Pacific Ten ""
1 TRUE Mountain West ""

```
        1 TRUE Mountain West ""
```


American college football: Identify ndoes

```
ggplot(data \(=\) ftnet,
    aes(from_id = from, to_id = to)) +
geom_net
    aes(colour = value,
        group = value,
        linetype = factor(1-same.conf),
        label = schools),
    linewidth = 0.5,
    size = 5,
    vjust \(=-0.75\),
    alpha = 0.3,
    layout.alg = 'fruchtermanreingold'
) +
theme_net () +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired")
```


American college football: Add colours and linetypes

```
ggplot(data = ftnet,
    aes(from_id = from, to_id = to)) +
geom_net(
    aes(colour = value,
        group = value,
        linetype = factor(1-same.conf),
        label = schools),
    linewidth = 0.5,
    size = 5,
    vjust = -0.75,
    alpha = 0.3,
    layout.alg = 'fruchtermanreingold'
) +
theme_net() +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired")
```


American college football: Line features

```
ggplot(data = ftnet,
    aes(from_id = from, to_id = to)) +
geom_net
    aes(colour = value,
        group = value,
        linetype = factor(1-same.conf),
        label = schools),
    linewidth = 0.5,
    size = 5,
    vjust \(=-0.75\),
    alpha = 0.3,
    layout.alg = 'fruchtermanreingold'
) +
theme_net () +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired")
```


American college football: Theme features and colours

```
ggplot(data = ftnet,
    aes(from_id = from, to_id = to)) +
geom_net(
    aes(colour = value,
        group = value,
        linetype = factor(1-same.conf),
        label = schools),
    linewidth = 0.5,
    size = 5,
    vjust \(=-0.75\),
    alpha = 0.3,
    layout.alg = 'fruchtermanreingold'
) +
theme_net() +
theme(legend.position = "bottom") +
scale_colour_brewer("Conference", palette = "Paired")
```

American college football:

What do we learn?

- Remember layout is done to place nodes that are more similar close together in the display.
- The colours indicate conference the team belongs too. For the most part, conferences are clustered, more similar to each other than other conferences.
- There are some clusters of conference groups, eg Mid-American, Big East, and Atlantic Coast
- The Independents are independent
- Some teams play far afield from their conference.

Our Turn: Harry Potter characters

See "9a-harry-potter.Rmd"
Source: wikicommons

Example: Harry Potter characters

There is a connection between two students if one provides emotional support to the other at some point in the book.

- Code to pull the data together is provided by Sam Tyner here.

Harry potter data as nodes and edges

Let's plot the characters

```
ggplot(data = hp_all,
    aes(from_id = from_id,
        to_id = to_id)) +
geom_net(aes(colour = house, group = house, shape = gender),
    fiteach=T,
    directed = T,
    size = 3,
    linewidth = .5,
    ealpha = .5,
    labelon = T,
    fontsize = 3,
    repel = T,
    labelcolour = "black",
    arrowsize = .5,
    singletons = FALSE) +
scale_colour_manual(values = c("#941B08","#F1F31C", "#071A80", "#154C07")) +
facet_wrap(~book, labeller = "label_both", ncol=3) +
theme_net() +
theme(panel.background = element_rect(colour = 'black'),
    legend.position="bottom")
```


Some more questions

- In the first book, which characters had the most connections?
- How about the least connections?

Let's plot the characters

- To make a network analysis, you need:
- an association matrix, that describes how nodes (vertices) are connected to each other
- a layout algorithm to place the nodes optimally so that the fewest edges cross, or that the nodes that are most closely associated are near to each other.

Your turn: rstudio exercise

- Complete 9a-class.Rmd
- Read in last semesters class data, which contains s1_name and s2_name are the first names of class members, and tutors, with the latter being the "go-to" person for the former.
- Write the code to produce a class network that looks
 something like the plot on the right.

