ETC1010: Introduction to Data Analysis Week 8, part B

Text analysis and linear models

Lecturer: Nicholas Tierney Department of Econometrics and Business Statistics ✓ nicholas.tierney@monash.edu May 2020

Pharmaceutical Society of Australia

Recap

- tidying up text
- unnest_tokens
- stop words (I, am, be, the, this, what, we, myself)
- sentiment analysis

Upcoming Assessment

- Project
- Practical Exam
- Final Exam

Project

- Complete ED quiz before Thursday
- Focus on narrowing down some interesting questions and datasets

Practice Exams

• Practice exams are up for the final exam and the practical exam

- Tidy Text continued
- Term Frequency
- Inverse Document Frequency
- More practice

What is a document about?

How do we measure the importance of a word to a document in a collection of documents?

i.e a novel in a collection of novels or a review in a set of reviews... We combine the following statistics:

- Term frequency
- Inverse document frequency

Term frequency

The raw frequency of a word w in a document d. It is a function of the word and the document.

$$tf(w, d) = \frac{\text{count of } w \text{ in } d}{\text{total count in } d}$$

Harry Potter books

Using data from Harry potter:

A tibble: 200 x 2

- ## book text
- ## <fct> <chr>

1 Philosopher's S... "THE BOY WHO LIVED Mr. and Mrs. Dursley, of number four, Priv ## 2 Philosopher's S... "THE VANISHING GLASS Nearly ten years had passed since the Du ## 3 Philosopher's S... "THE LETTERS FROM NO ONE The escape of the Brazilian boa cons ## 4 Philosopher's S... "THE KEEPER OF THE KEYS BOOM. They knocked again. Dudley jerk ## 5 Philosopher's S... "DIAGON ALLEY Harry woke early the next morning. Although he ## 6 Philosopher's S... "THE JOURNEY FROM PLATFORM NINE AND THREE-QUARTERS Harry's la ## 7 Philosopher's S... "THE SORTING HAT The door swung open at once. A tall, black-k ## 8 Philosopher's S... "THE POTIONS MASTER There, look.\" \"Where?\" \"Next to ## 9 Philosopher's S... "THE MIDNIGHT DUEL Harry had never believed he would meet a k ## 10 Philosopher's S... "HALLOWEEN Malfoy couldn't believe his eyes when he saw that ## ## # ... with 190 more rows

Harry Potter books

Unnest tokens, and use count to count up the words within each book:

book_words <- hp_books %>%
unnest_tokens(word, text) %>%
count(book, word, sort = TRUE)

book_words							
## # A tibble: 67,881 x 3							
## book	word	n					
## <fct></fct>	<chr></chr>	<int></int>					
<pre>## 1 Order of the Phoenix</pre>	the	11740					
<pre>## 2 Deathly Hallows</pre>	the	10335					
<pre>## 3 Goblet of Fire</pre>	the	9305					
<pre>## 4 Half-Blood Prince</pre>	the	7508					
## 5 Order of the Phoenix	to	6518					
## 6 Order of the Phoenix	and	6189					
<pre>## 7 Deathly Hallows</pre>	and	5510					
## 8 Order of the Phoenix	of	5332					
## 9 Prisoner of Azkaban	the	4990					
## 10 Goblet of Fire	and	4959					
## # with 67,871 more ro	WS						

Term frequency

Let's calculate frequency of words for The Philosopher's Stone

```
stopwords_smart <- get_stopwords(source = "smart")</pre>
```

```
document <- book_words %>%
    anti_join(stopwords_smart) %>%
    filter(book == "Philosopher's Stone")
document
```

```
## # A tibble: 5,547 x 3
```

##		book		word	n
##		<fct></fct>		<chr></chr>	<int></int>
##	1	Philosopher's	Stone	harry	1213
##	2	Philosopher's	Stone	ron	410
##	3	Philosopher's	Stone	hagrid	336
##	4	Philosopher's	Stone	back	261
##	5	Philosopher's	Stone	hermione	257
##	6	Philosopher's	Stone	professor	181
##	7	Philosopher's	Stone	looked	169
##	8	Philosopher's	Stone	snape	145
##	9	Philosopher's	Stone	dumbledore	143

Term frequency

The term frequency for each word is the number of times that word occurs divided by the total number of words in the document.

```
tbl_tf <- document %>%
```

mutate(tf = n / sum(n))

tbl_tf %>%

```
arrange(desc(tf))
```

```
## # A tibble: 5,547 x 4
```

##	book		word	n	tf
##	<fct></fct>		<chr></chr>	<int></int>	<dbl></dbl>
##	1 Philosopher's	Stone	harry	1213	0.0385
##	2 Philosopher's	Stone	ron	410	0.0130
##	3 Philosopher's	Stone	hagrid	336	0.0107
##	4 Philosopher's	Stone	back	261	0.00829
##	5 Philosopher's	Stone	hermione	257	0.00817
##	6 Philosopher's	Stone	professor	181	0.00575
##	7 Philosopher's	Stone	looked	169	0.00537
##	8 Philosopher's	Stone	snape	145	0.00461
##	9 Philosopher's	Stone	dumbledore	143	0.00454

Inverse-document frequency

We can instead look at a term's inverse document frequency (idf), which:

- Decreases weight for commonly used words, while
- Increasing weight for those words not used much in a collection of documents.

This effectively tells us **how common or rare a word is accross a collection of documents**.

It is a function of a word w, and the collection of documents \mathcal{D} .

$$idf(w, D) = \log\left(\frac{\text{Number of }D}{\text{Number of documents containing }w}\right)$$

Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents ${\cal D}$
- How many documents contain the word, "the". (All 20 contain "the")

$$idf(w = 20, D = 20) = \log\left(\frac{20}{20}\right)$$

 $idf(w = 20, D = 20) = \log(1)$

$$idf(w = 20, \mathcal{D} = 20) = 0$$

Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents ${\cal D}$
- How many documents contain the word, "Deciduous". (Only 1 contains the word "Deciduous")

$$idf(w = 1, \mathcal{D} = 20) = \log\left(\frac{20}{1}\right)$$

$$idf(w = 1, \mathcal{D} = 20) = \log(20)$$

$$idf(w = 1, D = 20) = 2.995$$

Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents ${\cal D}$
- How many documents contain the word, "Banana". (10 contain the word "Banana")

$$idf(w = 10, D = 20) = \log\left(\frac{20}{10}\right)$$

 $idf(w = 10, D = 20) = \log(2)$
 $idf(w = 1, D = 2) = 0.693$

Inverse document frequency

- When it is higher: Word is not used much in a collection of documents
 - E.g., 1 document uses "deciduous"
- When it is lower: Word is not commonly used much in a collection of documents
 - E.g., all documents use "the", not as many use "bananas"

Inverse document frequency

For the Harry Potter books, we could compute this in a somewhat roundabout as follows:

```
tbl_idf <- book_words %>%
   anti_join(stopwords_smart) %>%
   mutate(collection_size = n_distinct(book)) %>%
   group_by(collection_size, word) %>%
   summarise(times_word_used = n_distinct(book)) %>%
   mutate(freq = collection_size / times_word_used,
         idf = log(freq))
arrange(tbl_idf, idf)
## # A tibble: 23,945 x 5
## # Groups: collection_size [1]
## collection_size word times_word_used freq idf
           <int> <chr>
                            <int> <dbl> <dbl>
##
## 1 7 absolutely
                                        7 1
                                                  0
## 2
                7 absurd
                                        7 1
                                                  0
## 3
            7 accept
                                        7 1
                                                  0
                                        7 1
     7 accepted
                                                  0
##
  4
            7 accident
                                        7
                                             1
                                                  0
##
   5
```

Putting it together

term frequency, inverse document frequency

Multiply tf and idf together. This is a function of a word w, a document d, and the collection of documents \mathcal{D} :

 $tf_i df(w, d, D) = tf(w, d) \times idf(w, D)$

- A **High value** of *tf_idf* means a word has a high frequency within a document but is quite rare over all documents.
- Likewise if a word occurs in a lot of documents idf will be close to zero, so tf_idf will be small.

TF IDF summary

- TF IDF helps us find those words that are important in the content of documents
- It does this by increasing the weight of words not used very much in a collection, since the IDF is higher when a word isn't used often.
- So a **higher** TF IDF means the word is more important if it is both used a lot (has a high term frequency), and is uncommon (higher IDF).
- And a lower TF IDF means the word is less important, since it might be really common (high term frequency), but be really common (lower IDF).

Putting it together, tf-idf

We can calculate TF IDF using bind_tf_idf()

```
book_words_counts <- book_words %>%
    anti_join(stopwords_smart) %>%
    bind_tf_idf(term = word, document = book, n = n)
```

book_words_counts

```
## # A tibble: 64,582 x 6
```

##		book	word	п	tf	idf	tf_idf	
##		<fct></fct>	<chr></chr>	<int></int>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	
##	1	Order of the Phoenix	harry	3730	0.0352	0	0	
##	2	Goblet of Fire	harry	2936	0.0369	0	0	
##	3	Deathly Hallows	harry	2770	0.0345	0	0	
##	4	Half-Blood Prince	harry	2581	0.0374	0	0	
##	5	Prisoner of Azkaban	harry	1824	0.0408	0	0	
##	6	Chamber of Secrets	harry	1503	0.0409	0	0	
##	7	Order of the Phoenix	hermione	1220	0.0115	0	0	
##	8	Philosopher's Stone	harry	1213	0.0385	0	0	
##	9	Order of the Phoenix	ron	1189	0.0112	0	0	
##	10	Deathly Hallows	hermione	1077	0.0134	0	0	

What words were important to the books?

Your Turn

Explore uncommon / important words in Jane Austen's books!

• Complete "8b-jane-austen-tf-idf.Rmd"

Sentiment analysis

Sentiment analysis tags words or phrases with an emotion, and summarises these, often as the positive or negative state, over a body of text.

Sentiment analysis: examples

- Examining effect of emotional state in twitter posts
- Determining public reactions to government policy, or new product releases
- Trying to make money in the stock market by modeling social media posts on listed companies
- Evaluating product reviews on Amazon, restaurants on zomato, or travel options on TripAdvisor

The tidytext package has a lexicon of sentiments, based on four major sources: <u>AFINN</u>, <u>bing</u>, <u>Loughran</u>, <u>nrc</u>

emotion

What emotion do these words elicit in you?

- summer
- hot chips
- hug
- lose
- stolen
- smile

Different sources of sentiment

- The nrc lexicon categorizes words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.
- The bing lexicon categorizes words in a binary fashion into positive and negative categories.
- The AFINN lexicon assigns words with a score that runs between -5 and 5, with negative scores indicating negative sentiment and positive scores indicating positive sentiment.

Different sources of sentiment

get_sentiments("afinn")

##	# /	tibble: 2,	477 x	2
##		word	value	
##		<chr></chr>	<dbl></dbl>	
##	1	abandon	-2	
##	2	abandoned	-2	
##	3	abandons	-2	
##	4	abducted	-2	
##	5	abduction	-2	
##	6	abductions	-2	
##	7	abhor	-3	
##	8	abhorred	-3	
##	9	abhorrent	-3	
##	10	abhors	-3	
##	# .	. with 2,467	more	rows

Sentiment analysis

- Once you have a bag of words, you need to join the sentiments dictionary to the words data.
- Particularly the lexicon nrc has multiple tags per word, so you may need to use an "inner_join".
- inner_join() returns all rows from x where there are matching values in y, and all columns from x and y.
- If there are multiple matches between x and y, all combination of the matches are returned.

Exploring sentiment in Harry Potter

book_words

##	# A	A tibble: 67,881 x 3		
##		book	word	n
##		<fct></fct>	<chr></chr>	<int></int>
##	1	Order of the Phoenix	the	11740
##	2	Deathly Hallows	the	10335
##	3	Goblet of Fire	the	9305
##	4	Half-Blood Prince	the	7508
##	5	Order of the Phoenix	to	6518
##	6	Order of the Phoenix	and	6189
##	7	Deathly Hallows	and	5510
##	8	Order of the Phoenix	of	5332
##	9	Prisoner of Azkaban	the	4990
##	10	Goblet of Fire	and	4959
##	# .	with 67,871 more row	VS	

Count joyful words in "Chamber of Secrets"

```
nrc_joy <- get_sentiments("nrc") %>%
filter(sentiment == "joy")
```

```
book_words %>%
filter(book == "Chamber of Secrets") %>%
inner_join(nrc_joy) %>%
arrange(desc(n))
```

```
## # A tibble: 205 x 4
```

##		book			word	n	sentiment
##		<fct></fct>			<chr></chr>	<int></int>	<chr></chr>
##	1	Chamber o	of	Secrets	good	85	јоу
##	2	Chamber o	of	Secrets	diary	64	јоу
##	3	Chamber o	of	Secrets	found	53	јоу
##	4	Chamber o	of	Secrets	smile	29	јоу
##	5	Chamber o	of	Secrets	white	25	јоу
##	6	Chamber o	of	Secrets	green	24	јоу
##	7	Chamber o	of	Secrets	feeling	21	јоу
##	8	Chamber o	of	Secrets	kind	18	јоу
##	9	Chamber o	of	Secrets	magical	18	јоу
##	10	Chamber o	of	Secrets	pleased	18	јоу

Count joyful words in "Chamber of Secrets"

A tibble: 6 x 4

##	book	word n	sentiment
##	<fct></fct>	<chr> <int></int></chr>	<chr></chr>
## 1	Chamber of Secrets	good 85	јоу
## 2	Chamber of Secrets	diary 64	јоу
## 3	Chamber of Secrets	found 53	јоу
## 4	Chamber of Secrets	smile 29	јоу
## 5	Chamber of Secrets	white 25	јоу
## 6	Chamber of Secrets	green 24	јоу

"Good" is the most common joyful word, followed by "diary", "found", and "smile".

These make sense ... except for "diary", and "found",

and ... "white" and "green" ?

Your turn: go to rstudio.cloud

Go to "8b-jane-austen-sentiment.Rmd"

- What are the most common "anger" words used in Emma?
- What are the most common "surprise" words used in Emma?

Comparing lexicons

- All of the lexicons have a measure of positive or negative.
- We can tag the words in Emma by each lexicon, and see if they agree.

```
nrc_pn <- get_sentiments("nrc") %>%
  filter(sentiment %in% c("positive",
                          "negative"))
secrets_nrc <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(nrc_pn)
secrets_bing <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(get_sentiments("bing"))
secrets_afinn <- book_words %>%
  filter(book == "Chamber of Secrets") %>%
  inner_join(get_sentiments("afinn"))
```

Comparing lexicons

secrets_nrc

A tibble: 1,291 x 4

##		book			word	п	sentiment
##		<fct></fct>			<chr></chr>	<int></int>	<chr></chr>
##	1	Chamber	of	Secrets	harry	1503	negative
##	2	Chamber	of	Secrets	professor	190	positive
##	3	Chamber	of	Secrets	sir	88	positive
##	4	Chamber	of	Secrets	good	85	positive
##	5	Chamber	of	Secrets	diary	64	positive
##	6	Chamber	of	Secrets	black	61	negative
##	7	Chamber	of	Secrets	found	53	positive
##	8	Chamber	of	Secrets	small	51	negative
##	9	Chamber	of	Secrets	boy	49	negative
##	10	Chamber	of	Secrets	wizard	45	positive
##	# .	with 1,	281	1 more ro	OWS		

Comparing lexicons

secrets_afinn

A tibble: 768 x 4

##		book			word	n	value		
##		<fct></fct>			<chr></chr>	<int></int>	<dbl></dbl>		
##	1	Chamber	of	Secrets	no	221	- 1		
##	2	Chamber	of	Secrets	like	184	2		
##	3	Chamber	of	Secrets	good	85	3		
##	4	Chamber	of	Secrets	great	67	3		
##	5	Chamber	of	Secrets	want	66	1		
##	6	Chamber	of	Secrets	better	54	2		
##	7	Chamber	of	Secrets	hard	47	- 1		
##	8	Chamber	of	Secrets	reached	43	1		
##	9	Chamber	of	Secrets	stop	42	- 1		
##	10	Chamber	of	Secrets	help	40	2		
## # with 758 more rows									

Comparing lexicons

```
secrets_nrc %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
## # A tibble: 2 x 3
## sentiment n_sentiment prop_total
## 1 negative 4524 0.609
## 2 positive 2904 0.391
secrets_bing %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
## # A tibble: 2 x 3
##
  sentiment n_sentiment prop_total
## * <chr>
        <int> <dbl>
## 1 negative 2970 0.582
## 2 positive 2133 0.418
```

Comparing lexicons

Your turn:

Continue along with "8b-jane-austen-sentiment.Rmd"

- Using your choice of lexicon (nrc, bing, or afinn) compute the proportion of positive words in each of Austen's books.
- Which book is the most positive? negative?

Example: Simpsons

Data from the popular animated TV series, The Simpsons, has been made available on <u>kaggle</u>.

- simpsons_script_lines.csv: Contains the text spoken during each episode (including details about which character said it and where)
- simpsons_characters.csv: Contains character names and a character id

The Simpsons

```
scripts <- read_csv("data/simpsons_script_lines.csv")
chs <- read_csv("data/simpsons_characters.csv")
sc <- left_join(scripts, chs, by = c("character_id" = "id"))</pre>
```

SC

A tibble: 157,462 x 16

id episode_id number raw_text timestamp_in_ms speaking_line character_id

					-			
##		<dbl></dbl>	<dbl> <</dbl>	dbl>	<chr></chr>	<dbl></dbl>	<1g1>	<dbl></dbl>
##	1	9549	32	209	Miss Ho…	848000	TRUE	464
##	2	9550	32	210	Lisa Si…	856000	TRUE	9
##	3	9551	32	211	Miss Ho…	856000	TRUE	464
##	4	9552	32	212	Lisa Si…	864000	TRUE	9
##	5	9553	32	213	Edna Kr…	864000	TRUE	40
##	6	9554	32	214	Martin …	877000	TRUE	38
##	7	9555	32	215	Edna Kr…	881000	TRUE	40
##	8	9556	32	216	Bart Si…	882000	TRUE	8
##	9	9557	32	217	(Apartm…	889000	FALSE	NA
##	10	9558	32	218	Lisa Si…	889000	TRUE	9
##	#	with 157,4	52 more	rows,	and 9 more variab	oles: la	ocation_id <dbl>,</dbl>	
							<pre>r>, spoken_words <chr></chr></pre>	

count the number of times a character speaks

sc %>% count(name, sort = TRUE)

##	#	Α	tibbl	e:	6,	143	X	2
----	---	---	-------	----	----	-----	---	---

##		name	п
##		<chr></chr>	<int></int>
##	1	Homer Simpson	29945
##	2	<na></na>	19661
##	3	Marge Simpson	14192
##	4	Bart Simpson	13894
##	5	Lisa Simpson	11573
##	6	C. Montgomery Burns	3196
##	7	Moe Szyslak	2853
##	8	Seymour Skinner	2437
##	9	Ned Flanders	2139
##	10	Grampa Simpson	1952
##	# .	with 6,133 more row	VS

missing name?

sc %>% filter(is.na(name))

A tibble: 19,661 x 16

id episode_id number raw_text timestamp_in_ms speaking_line character_id

##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>	<1g1>	<dbl></dbl>	>
##	1	9557	32	217	(Apartm	889000	FALSE	NA	1
##	2	9565	32	225	(Spring…	918000	FALSE	NA	1
##	3	75766	263	106	(Moe's …	497000	FALSE	NA	1
##	4	9583	32	243	(Train …	960000	FALSE	NA	1
##	5	9604	32	264	(Simpso…	1070000	FALSE	NA	1
##	6	9655	33	0	(Simpso…	84000	FALSE	NA	ł
##	7	9685	33	30	(Simpso…	177000	FALSE	NA	ł
##	8	9686	33	31	(Simpso…	177000	FALSE	NA	1
##	9	9727	33	72	(Simpso…	349000	FALSE	NA	1
##	10	9729	33	74	(Simpso…	355000	FALSE	NA	1
					1 0				

... with 19,651 more rows, and 9 more variables: location_id <dbl>,

- ## # raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>,
- ## # normalized_text <chr>, word_count <chr>, name <chr>, normalized_name <chr>,

gender <chr>

SC %>%

unnest_tokens(output = word,

input = spoken_words)

A tibble: 1,355,370 x 16

##		id	episode_id	number	raw_	text	<pre>timestamp_in_ms</pre>	<pre>speaking_line</pre>	character_id
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr< td=""><td>></td><td><db1></db1></td><td><1g1></td><td><dbl></dbl></td></chr<>	>	<db1></db1>	<1g1>	<dbl></dbl>
##	1	9549	32	209	Miss	Но	848000	TRUE	464
##	2	9549	32	209	Miss	Но	848000	TRUE	464
##	3	9549	32	209	Miss	Но	848000	TRUE	464
##	4	9549	32	209	Miss	Но	848000	TRUE	464
##	5	9549	32	209	Miss	Но	848000	TRUE	464
##	6	9549	32	209	Miss	Но	848000	TRUE	464
##	7	9549	32	209	Miss	Но	848000	TRUE	464
##	8	9549	32	209	Miss	Но	848000	TRUE	464
##	9	9549	32	209	Miss	Но	848000	TRUE	464
##	10	9549	32	209	Miss	Но	848000	TRUE	464
##	#	with	1,355,360 m	nore row	vs, al	nd 9	more variables:	location_id <	dbl>,
##	#	raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,</chr></chr></chr>							
##	#	word	_count <chr< td=""><td>>, name</td><td><chr< td=""><td>>, na</td><td>ormalized_name <c< td=""><td>chr>, gender <</td><td>chr>, word <chr></chr></td></c<></td></chr<></td></chr<>	>, name	<chr< td=""><td>>, na</td><td>ormalized_name <c< td=""><td>chr>, gender <</td><td>chr>, word <chr></chr></td></c<></td></chr<>	>, na	ormalized_name <c< td=""><td>chr>, gender <</td><td>chr>, word <chr></chr></td></c<>	chr>, gender <	chr>, word <chr></chr>

SC %>%

```
unnest_tokens(output = word,
```

input = spoken_words) %>%

anti_join(stop_words)

A tibble: 511,869 x 16

id episode_id number raw_text timestamp_in_ms speaking_line character_id

##		<dbl></dbl>	<dbl> <</dbl>	<dbl></dbl>	<chr></chr>	>	<dbl></dbl>	<1g1>	<db1></db1>
##	1	9549	32	209	Miss	Но	848000	TRUE	464
##	2	9549	32	209	Miss	Но	848000	TRUE	464
##	3	9549	32	209	Miss	Но	848000	TRUE	464
##	4	9549	32	209	Miss	Но	848000	TRUE	464
##	5	9550	32	210	Lisa	Si	856000	TRUE	9
##	6	9551	32	211	Miss	Но	856000	TRUE	464
##	7	9551	32	211	Miss	Но	856000	TRUE	464
##	8	9551	32	211	Miss	Но	856000	TRUE	464
##	9	9551	32	211	Miss	Но	856000	TRUE	464
##	10	9551	32	211	Miss	Но	856000	TRUE	464
##	#	with 511	,859 more	rows,	and	9 more	variables: lo	ocation_id <d< td=""><td>dbl>,</td></d<>	dbl>,
##	#	raw_char	acter_text	t <chi< td=""><td>r>, ra</td><td>aw_locat</td><td>ion_text <ch< td=""><td>r>, normalize</td><td>ed_text <chr>,</chr></td></ch<></td></chi<>	r>, ra	aw_locat	ion_text <ch< td=""><td>r>, normalize</td><td>ed_text <chr>,</chr></td></ch<>	r>, normalize	ed_text <chr>,</chr>

word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr>

```
sc %>%
 unnest_tokens(output = word,
               input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(word, sort = TRUE) %>%
 filter(!is.na(word))
## # A tibble: 41,891 x 2
##
    word
            n
##
  <chr> <int>
##
  1 hey 4366
##
   2 homer 4328
##
   3 bart 3434
##
   4 uh
            3090
##
   5 yeah
             2997
##
   6 simpson 2846
##
   7 marge
             2786
##
   8 gonna
            2639
##
   9 dad
             2521
##
  10 time
          2508
## # ... with 41,881 more rows
```

Simpsons plot most common words

Tag the words with sentiments

Using AFINN words will be tagged on a negative to positive scale of -1 to 5.

```
sc_word <- sc %>%
unnest_tokens(output = word, input = spoken_words) %>%
anti_join(stop_words) %>%
count(name, word) %>%
filter(!is.na(word))
```

sc_word

##	# A tibble: 220,838 x 3	
##	name word	п
##	<chr> <chr></chr></chr>	<int></int>
##	1 '30s Reporter burns	1
##	2 '30s Reporter kinda	1
##	3 '30s Reporter sensational	. 1
##	4 1-Year-Old Bart beer	1
##	5 1-Year-Old Bart daddy	5
##	6 1-Year-Old Bart fat	1
##	7 1-Year-Old Bart moustache	1

Tag the words with sentiments

sc_s <- sc_word %>%

inner_join(get_sentiments("afinn"), by = "word")

SC_S

A tibble: 26,688 x 4

##	name	word	n	value
##	<chr></chr>	<chr></chr>	<int></int>	<dbl></dbl>
##	1 1-Year-Old Bart	nice	1	3
##	2 10-Year-Old Home	r chance	1	2
##	3 10-Year-Old Home	r cool	1	1
##	4 10-Year-Old Home	r die	1	-3
##	5 10-Year-Old Home	r died	1	-3
##	6 10-Year-Old Home	r dreams	1	1
##	7 10-Year-Old Home	r happy	1	3
##	8 10-Year-Old Home	r heaven	1	2
##	9 10-Year-Old Home	r hell	1	-4
##	10 10-Year-Old Home	r kiss	1	2
##	# with 26,678 more	e rows		

Examine Simpsons characters

SC_S %>% group_by(name) %>% summarise(m = mean(value)) %>% arrange(desc(m)) ## # A tibble: 3,409 x 2 ## name т *## <chr> <dbl>* ## 1 2nd Sportscaster 4 ## 2 4-h Judge 4 3 7-Year-Old Brockman ## 4 ## 4 ALEPPO 4 ## 5 All Kids 4 6 Applicants ## 4 7 Australian ## 4 ## 8 Bill James 4 ## 9 Canadian Player 4 ## 10 Carl Kasell 4 ## # ... with 3,399 more rows

Examine Simpsons characters: Focus characters.

```
keep <- sc %>% count(name,
                   sort=TRUE) %>%
 filter(!is.na(name)) %>%
 filter(n > 999)
SC_S %>%
 filter(name %in% keep$name) %>%
 group_by(name) %>%
  summarise(m = mean(value)) %>%
 arrange(m)
## # A tibble: 16 x 2
##
     name
                              т
##
  <chr>
                           <db1>
                        -0.519
##
  1 Nelson Muntz
   2 Grampa Simpson
                   -0.429
##
##
   3 Homer Simpson
                      -0.428
   4 Bart Simpson
##
                         -0.391
##
  5 Chief Wiggum
                        -0.388
##
   6 Lisa Simpson -0.388
   7 Marge Simpson
                          -0.344
##
```

Your turn: "8bsimpsons.Rmd"

- 1. Bart Simpson is featured at various ages. How has the sentiment of his words changed over his life?
- 2. Repeat the sentiment analysis with the NRC lexicon. What character is the most "angry"? "joyful"?

Extension: Explore Harry Potter

I've included the harry potter data the code from the harry potter part of the lecture in "8b-harry-potter.Rmd", if you want to have a play around, I've got a few questions there.

Further extension

Text Mining with R has an example comparing historical physics textbooks: *Discourse on Floating Bodies* by Galileo Galilei, *Treatise on Light* by Christiaan Huygens, *Experiments with Alternate Currents of High Potential and High Frequency* by Nikola Tesla, and *Relativity: The Special and General Theory* by Albert Einstein. All are available on the Gutenberg project.

Work your way through the <u>comparison of physics books</u>. It is section 3.4.

Thanks

- Dr. Mine Çetinkaya-Rundel
- Dr. Julia Silge: <u>https://github.com/juliasilge/tidytext-tutorial</u> and <u>https://juliasilge.com/blog/animal-crossing/</u>
- Dr. Julia Silge and Dr. David Robinson: <u>https://www.tidytextmining.com/</u>