

Recap

- tidying up text
- unnest_tokens
- stop words - (I, am, be, the, this, what, we, myself)
- sentiment analysis

Upcoming Assessment

- Project
- Practical Exam
- Final Exam

Project

- Complete ED quiz before Thursday
- Focus on narrowing down some interesting questions and datasets

Practice Exams

- Practice exams are up for the final exam and the practical exam

Overview

- Tidy Text continued
- Term Frequency
- Inverse Document Frequency
- More practice

What is a document about?

How do we measure the importance of a word to a document in a collection of documents?
 i.e a novel in a collection of novels or a review in a set of reviews...
 We combine the following statistics:
 - Term frequency
 - Inverse document frequency

Term frequency

The raw frequency of a word w in a document d. It is a function of the word and the document.

$$
t f(w, d)=\frac{\text { count of } \mathrm{w} \text { in } \mathrm{d}}{\text { total count in } \mathrm{d}}
$$

Harry Potter books

Using data from Harry potter:

```
## # A tibble: 200 x 2
## book text
## <fct> <chr>
## 1 Philosopher's S... "THE BOY WHO LIVED Mr. and Mrs. Dursley, of number four, Pri\
## 2 Philosopher's S... "THE VANISHING GLASS Nearly ten years had passed since the Dו
## 3 Philosopher's S... "THE LETTERS FROM NO ONE The escape of the Brazilian boa cons
## 4 Philosopher's S... "THE KEEPER OF THE KEYS BOOM. They knocked again. Dudley jerk
## 5 Philosopher's S... "DIAGON ALLEY Harry woke early the next morning. Although he
## 6 Philosopher's S... "THE JOURNEY FROM PLATFORM NINE AND THREE-QUARTERS Harry's lć
## }7\mathrm{ Philosopher's S... "THE SORTING HAT The door swung open at once. A tall, black-卜
## 8 Philosopher's S... "THE POTIONS MASTER There, look.\" \"Where?\" \"Next to
## 9 Philosopher's S... "THE MIDNIGHT DUEL Harry had never believed he would meet a k
## 10 Philosopher's S... "HALLOWEEN Malfoy couldn't believe his eyes when he saw that
## # ... with }190\mathrm{ more rows
```


Harry Potter books

Unnest tokens, and use count to count up the words within each book:

```
book_words <- hp_books %>%
    unnest_tokens(word, text) %>%
    count(book, word, sort = TRUE)
```


Term frequency

```
Let's calculate frequency of words for The Philosopher's Stone
stopwords_smart <- get_stopwords(source = "smart")
document <- book_words %>%
    anti_join(stopwords_smart) %>%
    filter(book == "Philosopher's Stone")
document
## # A tibble: 5,547 x 3
## book word n
## <fct> <chr> <int>
## 1 Philosopher's Stone harry 1213
## 2 Philosopher's Stone ron 410
## 3 Philosopher's Stone hagrid 336
## 4 Philosopher's Stone back 261
## 5 Philosopher's Stone hermione 257
## 6 Philosopher's Stone professor }18
## 7 Philosopher's Stone looked 169
## 8 Philosopher's Stone snape }14
## 9 Philosopher's Stone dumbledore }14
```


Term frequency

The term frequency for each word is the number of times that word

 occurs divided by the total number of words in the document.```
tbl_tf <- document %>%
 mutate(tf = n / sum(n))
tbl_tf %>%
 arrange(desc(tf))
A tibble: 5,547 x 4
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline \#\# & & book & & word & \(n\) & \\
\hline \#\# & & <fct> & & <chr> & <int> & <dbl> \\
\hline \#\# & 1 & Philosopher's & Stone & harry & 1213 & 0.0385 \\
\hline \#\# & 2 & Philosopher's & Stone & ron & 410 & 0.0130 \\
\hline \# & 3 & Philosopher's & ton & hagrid & 336 & 0.0107 \\
\hline \# & 4 & Philosopher's & tone & back & 261 & 0.00829 \\
\hline \#\# & 5 & Philosopher's & tone & hermione & 257 & 0.008 \\
\hline \#\# & 6 & Philosopher's & Stone & professor & 181 & 0.005 \\
\hline \#\# & 7 & Philosopher's & Stone & looked & 169 & 0.0053 \\
\hline \#\# & 8 & Philosopher's & Stone & snape & 145 & 0.00461 \\
\hline \#\# & 9 & Philosopher's & Stone & dumbledore & 143 & 0.004 \\
\hline
\end{tabular}
```


## Inverse-document frequency

We can instead look at a term's inverse document frequency (idf), which:

- Decreases weight for commonly used words, while
- Increasing weight for those words not used much in a collection of documents.
This effectively tells us how common or rare a word is accross a collection of documents.
It is a function of a word $w$, and the collection of documents $\mathcal{D}$.

$$
i d f(w, \mathcal{D})=\log \left(\frac{\text { Number of } \mathcal{D}}{\text { Number of documents containing } w}\right)
$$

## Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents $\mathcal{D}$
- How many documents contain the word, "the". (All 20 contain "the")

$$
\begin{gathered}
i d f(w=20, \mathcal{D}=20)=\log \left(\frac{20}{20}\right) \\
i d f(w=20, \mathcal{D}=20)=\log (1) \\
i d f(w=20, \mathcal{D}=20)=0
\end{gathered}
$$

## Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents $\mathcal{D}$
- How many documents contain the word, "Deciduous". (Only 1 contains the word "Deciduous")

$$
\begin{gathered}
i d f(w=1, \mathcal{D}=20)=\log \left(\frac{20}{1}\right) \\
i d f(w=1, \mathcal{D}=20)=\log (20) \\
i d f(w=1, \mathcal{D}=20)=2.995
\end{gathered}
$$

## Inverse-document frequency: Example

Let's say that we had 20 documents:

- Out of 20 documents $\mathcal{D}$
- How many documents contain the word, "Banana". (10 contain the word "Banana")

$$
\begin{gathered}
i d f(w=10, \mathcal{D}=20)=\log \left(\frac{20}{10}\right) \\
i d f(w=10, \mathcal{D}=20)=\log (2) \\
i d f(w=1, \mathcal{D}=2)=0.693
\end{gathered}
$$

## Inverse document frequency

- When it is higher: Word is not used much in a collection of documents
- E.g., 1 document uses "deciduous"
- When it is lower: Word is not commonly used much in a collection of documents
- E.g., all documents use "the", not as many use "bananas"


## Inverse document frequency

## For the Harry Potter books, we could compute this in a somewhat roundabout as follows:

```
tbl_idf <- book_words %>%
 anti_join(stopwords_smart) %>%
 mutate(collection_size = n_distinct(book)) %>%
 group_by(collection_size, word) %>%
 summarise(times_word_used = n_distinct(book)) %>%
 mutate(freq = collection_size / times_word_used,
 idf = log(freq))
arrange(tbl_idf, idf)
A tibble: 23,945 x 5
Groups: collection_size [1]
collection_size word times_word_used freq idf
<int> <chr> <int> <dbl> <dbl>
1 7 absolutely 0
2 7 absurd 0
3 7 accept 0
4 7 accepted 0 7 1 0
5 7 accident
```


## Putting it together

## term frequency, inverse document frequency

Multiply tf and idf together. This is a function of a word $w$, a document $d$, and the collection of documents $\mathcal{D}$ :

$$
t f_{i} d f(w, d, \mathcal{D})=t f(w, d) \times i d f(w, \mathcal{D})
$$

- A High value of $t f$ _idf means a word has a high frequency within a document but is quite rare over all documents.
- Likewise if a word occurs in a lot of documents idf will be close to zero, so tf_idf will be small.


## TF IDF summary

- TF IDF helps us find those words that are important in the content of documents
- It does this by increasing the weight of words not used very much in a collection, since the IDF is higher when a word isn't used often.
- So a higher TF IDF means the word is more important if it is both used a lot (has a high term frequency), and is uncommon (higher IDF).
- And a lower TF IDF means the word is less important, since it might be really common (high term frequency), but be really common (lower IDF).


## Putting it together, tf-idf

## We can calculate TF IDF using bind_tf_idf()

```
book_words_counts <- book_words %>%
 anti_join(stopwords_smart) %>%
 bind_tf_idf(term = word, document = book, n = n)
```

| \#\# book | word | $n$ | $t f$ | $i d f$ | $t f \_i d f$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \#\# <fct> | <chr> | <int> | <dbl> | <dbl> | <dbl> |
| \#\# 1 Order of the Phoenix | harry | 3730 | 0.0352 | $\theta$ | 0 |
| \#\# 2 Goblet of Fire | harry | 2936 | 0.0369 | 0 | 0 |
| \#\# 3 Deathly Hallows | harry | 2770 | 0.0345 | 0 | 0 |
| \#\# 4 Half-Blood Prince | harry | 2581 | 0.0374 | 0 | 0 |
| \#\# 5 Prisoner of Azkaban | harry | 1824 | 0.0408 | 0 | 0 |
| \#\# 6 Chamber of Secrets | harry | 1503 | 0.0409 | 0 | 0 |
| \#\# 7 Order of the Phoenix | hermione | 1220 | 0.0115 | 0 | 0 |
| \#\# 8 Philosopher's Stone | harry | 1213 | 0.0385 | $\theta$ | 0 |
| \#\# 9 Order of the Phoenix | ron | 1189 | 0.0112 | 0 | 0 |
| \#\# 10 Deathly Hallows | hermione | 1077 | 0.0134 | 0 | 0 |

What words were important to the books?

## Your Turn

Explore uncommon / important words in Jane Austen's books!

- Complete "8b-jane-austen-tf-idf.Rmd"


## Sentiment analysis

Sentiment analysis tags words or phrases with an emotion, and summarises these, often as the positive or negative state, over a body of text.

## Sentiment analysis: examples

- Examining effect of emotional state in twitter posts
- Determining public reactions to government policy, or new product releases
- Trying to make money in the stock market by modeling social media posts on listed companies
- Evaluating product reviews on Amazon, restaurants on zomato, or travel options on TripAdvisor


## Lexicons

The tidytext package has a lexicon of sentiments, based on four major sources: $\underline{\text { AFINN, bing, Loughran, nrc }}$

## emotion

## What emotion do these words elicit in you?

- summer
- hot chips
- hug
- lose
- stolen
- smile


## Different sources of sentiment

- The nrc lexicon categorizes words in a binary fashion ("yes"/"no") into categories of positive, negative, anger, anticipation, disgust, fear, joy, sadness, surprise, and trust.
- The bing lexicon categorizes words in a binary fashion into positive and negative categories.
- The AFINN lexicon assigns words with a score that runs between -5 and 5 , with negative scores indicating negative sentiment and positive scores indicating positive sentiment.


## Different sources of sentiment

| get_sentiments("afinn") |  |  |  |
| :---: | :---: | :---: | :---: |
| \#\# \# A tibble: 2,477 x 2 |  |  |  |
| \#\# |  | word | value |
| \#\# |  | <chr> | <dbl> |
| \#\# | 1 | abandon | -2 |
| \#\# | 2 | abandoned | -2 |
| \#\# | 3 | abandons | -2 |
| \#\# | 4 | abducted | -2 |
| \#\# | 5 | abduction | -2 |
| \#\# | 6 | abductions | -2 |
| \#\# | 7 | abhor | -3 |
| \#\# | 8 | abhorred | -3 |
|  | 9 | abhorrent | -3 |
|  | 10 | abhors | -3 |
| \#\# \# ... with 2, 467 more rows |  |  |  |

## Sentiment analysis

- Once you have a bag of words, you need to join the sentiments dictionary to the words data.
- Particularly the lexicon nrc has multiple tags per word, so you may need to use an "inner_join".
- inner_join( ) returns all rows from $x$ where there are matching values in $y$, and all columns from $x$ and $y$.
- If there are multiple matches between $x$ and $y$, all combination of the matches are returned.


## Exploring sentiment in Harry Potter

book_words

| \#\# |  | book | word |  |
| :---: | :---: | :---: | :---: | :---: |
| \#\# |  | <fct> | <chr> | <int> |
| \#\# | 1 | Order of the Phoenix | the | 11740 |
| \#\# | 2 | Deathly Hallows | the | 10335 |
| \#\# | 3 | Goblet of Fire | the | 9305 |
| \#\# | 4 | Half-Blood Prince | the | 7508 |
| \#\# | 5 | Order of the Phoenix | to | 6518 |
| \#\# | 6 | Order of the Phoenix | and | 6189 |
| \#\# | 7 | Deathly Hallows | and | 5510 |
| \#\# | 8 | Order of the Phoenix | of | 5332 |
| \#\# | 9 | Prisoner of Azkaban | the | 4990 |
|  | 10 | Goblet of Fire | and | 4959 |

## Count joyful words in "Chamber of Secrets"



## Count joyful words in "Chamber of Secrets"

```
A tibble: 6 x 4
book word n sentiment
<fct> <chr> <int> <chr>
1 Chamber of Secrets good 85 joy
2 Chamber of Secrets diary }64\mathrm{ joy
3 Chamber of Secrets found 53 joy
4 Chamber of Secrets smile 29 joy
5 Chamber of Secrets white 25 joy
6 Chamber of Secrets green 24 joy
```

"Good" is the most common joyful word, followed by "diary", "found", and "smile".

These make sense ... except for "diary", and "found", and ... "white" and "green" ?

# Your turn: go to rstudio.cloud 

Go to "8b-jane-austen-sentiment.Rmd"

- What are the most common "anger" words used in Emma?
- What are the most common "surprise" words used in Emma?


## Comparing lexicons

- All of the lexicons have a measure of positive or negative.
- We can tag the words in Emma by each lexicon, and see if they agree.

```
nrc_pn <- get_sentiments("nrc") %>%
 filter(sentiment %in% c("positive",
 "negative"))
secrets_nrc <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(nrc_pn)
secrets_bing <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(get_sentiments("bing"))
secrets_afinn <- book_words %>%
 filter(book == "Chamber of Secrets") %>%
 inner_join(get_sentiments("afinn"))
```


## Comparing lexicons

## secrets_nrc

```
A tibble: 1,291 x 4
book word n sentiment
<fct> <chr>
<int> <chr>
1 Chamber of Secrets harry }1503\mathrm{ negative
2 Chamber of Secrets professor }190\mathrm{ positive
3 Chamber of Secrets sir 88 positive
4 Chamber of Secrets good 85 positive
5 Chamber of Secrets diary }64\mathrm{ positive
6 Chamber of Secrets black 61 negative
7 Chamber of Secrets found }53\mathrm{ positive
8 Chamber of Secrets small }51\mathrm{ negative
9 Chamber of Secrets boy 49 negative
10 Chamber of Secrets wizard 45 positive
... with 1,281 more rows
```


## Comparing lexicons

## secrets_afinn

| \#\# |  | book | word | $n$ | value |
| :---: | :---: | :---: | :---: | :---: | :---: |
| \#\# |  | <fct> | <chr> | <int> | <dbl> |
| \#\# | 1 | Chamber of Secrets | no | 221 | -1 |
| \#\# | 2 | Chamber of Secrets | like | 184 | 2 |
| \#\# | 3 | Chamber of Secrets | good | 85 | 3 |
| \#\# | 4 | Chamber of Secrets | great | 67 | 3 |
| \#\# | 5 | Chamber of Secrets | want | 66 | 1 |
| \#\# | 6 | Chamber of Secrets | better | 54 | 2 |
| \#\# | 7 | Chamber of Secrets | hard | 47 | -1 |
| \#\# | 8 | Chamber of Secrets | reached | 43 | 1 |
| \#\# | 9 | Chamber of Secrets | stop | 42 | -1 |
|  | 10 | Chamber of Secrets | help | 40 | 2 |

\#\# \# ... with 758 more rows

## Comparing lexicons

```
secrets_nrc %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 4524 0.609
2 positive 2904 0.391
secrets_bing %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 2970 0.582
2 positive 2133 0.418
```


## Comparing lexicons

```
secrets_afinn %>%
 mutate(sentiment = ifelse(value > 0,
 "positive",
 "negative")) %>%
 count(sentiment, name = "n_sentiment") %>%
 mutate(prop_total = n_sentiment / sum(n_sentiment))
A tibble: 2 x 3
sentiment n_sentiment prop_total
* <chr> <int> <dbl>
1 negative 2273 0.531
2 positive 2010 0.469
```


## Your turn:

Continue along with "8b-jane-austen-sentiment.Rmd"

- Using your choice of lexicon (nrc, bing, or afinn) compute the proportion of positive words in each of Austen's books.
- Which book is the most positive? negative?


## Example: Simpsons

Data from the popular animated TV series, The Simpsons, has been made available on kaggle.

- simpsons_script_lines.csv: Contains the text spoken during each episode (including details about which character said it and where)
- simpsons_characters.csv: Contains character names and a character id


## The Simpsons

```
scripts <- read_csv("data/simpsons_script_lines.csv")
chs <- read_csv("data/simpsons_characters.csv")
sc <- left_join(scripts, chs, by = c("character_id" = "id"))
sc
A tibble: 157,462 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho... 848000 TRUE 464
2 9550 32 210 Lisa Si... 856000 TRUE 9
3 9551 32 211 Miss Ho... 856000 TRUE 464
4 9552 32 212 Lisa Si... 864000 TRUE 9
5 9553 32 213 Edna Kr... 864000 TRUE 40
6 9554 32 214 Martin ... 877000 TRUE 38
7 9555 32 215 Edna Kr... 881000 TRUE 40
8 9556 32 216 Bart Si... 882000 TRUE 8
9 9557 32 217 (Apartm... 889000 FALSE NA
10 9558 32 218 Lisa Si... 889000 TRUE 9
... with 157,452 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, spoken_words <chr>,
```


## count the number of times a character speaks

```
sc %>% count(name, sort = TRUE)
A tibble: 6,143 x 2
name n
<chr> <int>
1 Homer Simpson 29945
2 <NA> 19661
3 Marge Simpson 14192
4 Bart Simpson 13894
5 Lisa Simpson 11573
6 C. Montgomery Burns 3196
7 Moe Szyslak 2853
8 Seymour Skinner 2437
9 Ned Flanders 2139
10 Grampa Simpson 1952
... with 6,133 more rows
```


## missing name?



## Simpsons Pre-process the text

```
Sc %>%
 unnest_tokens(output = word,
 input = spoken_words)
A tibble: 1,355,370 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho... 848000 TRUE 464
2 9549 32 209 Miss Ho... 848000 TRUE 464
3 9549 32 209 Miss Ho\ldots. 848000 TRUE 464
4 9549 32 209 Miss Ho... 848000 TRUE 464
5 9549 32 209 Miss Ho... 848000 TRUE 464
6 9549 32 209 Miss Ho... 848000 TRUE 464
7 9549 32 209 Miss Ho... 848000 TRUE 464
8 9549 32 209 Miss Ho... 848000 TRUE 464
9 9549 32 209 Miss Ho... 848000 TRUE 464
10 9549 32 209 Miss Ho... 848000 TRUE 464
... with 1,355,360 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr>
```


## Simpsons Pre-process the text

```
Sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words)
A tibble: 511,869 x 16
id episode_id number raw_text timestamp_in_ms speaking_line character_id
<dbl> <dbl> <dbl> <chr> <dbl> <lgl> <dbl>
1 9549 32 209 Miss Ho... 848000 TRUE 464
2 9549 32 209 Miss Ho... 848000 TRUE 464
3 9549 32 209 Miss Ho... 848000 TRUE 464
4 9549 32 209 Miss Ho... 848000 TRUE 464
5 9550 32 210 Lisa Si... 856000 TRUE 9
6 9551 32 211 Miss Ho... 856000 TRUE 464
7 9551 32 211 Miss Ho... 856000 TRUE 464
8 9551 32 211 Miss Ho... 856000 TRUE 464
9 9551 32 211 Miss Ho\ldots. 856000 TRUE 464
10 9551 32 211 Miss Ho... 856000 TRUE 464
... with 511,859 more rows, and 9 more variables: location_id <dbl>,
raw_character_text <chr>, raw_location_text <chr>, normalized_text <chr>,
word_count <chr>, name <chr>, normalized_name <chr>, gender <chr>, word <chr> 46/57
```


## Simpsons Pre-process the text

```
Sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(word, sort = TRUE) %>%
 filter(!is.na(word))
A tibble: 41,891 x 2
word n
<chr> <int>
1 hey 4366
2 homer 4328
3 bart 3434
4 uh 3090
5 yeah 2997
6 simpson 2846
7 marge 2786
8 gonna 2639
9 dad 2521
10 time 2508
... with 41,881 more rows
```


## Simpsons Pre-process the text

```
sc_top_20 <- sc %>%
 unnest_tokens(output = word,
 input = spoken_words) %>%
 anti_join(stop_words) %>%
 count(word, sort = TRUE) %>%
 filter(!is.na(word)) %>%
 mutate(word = factor(word,
 levels = rev(unique(word)))) %>%
 top_n(20)
```


## Simpsons plot most common words

```
ggplot(sc_top_20,
 aes(x = word,
 \(y=n))+\)
 geom_col() +
 labs(x = ' ',
 y = 'count',
 title = 'Top 20 words') -
 coord_flip() +
 theme_bw()
```



## Tag the words with sentiments

```
Using AFINN words will be tagged on a negative to positive scale of -1 to 5 .
```

\#\# name | en | word |
| :--- | :--- |
| \#\# | <chr> |

```
sc_word <- sc %>%
```

sc_word <- sc %>%
unnest_tokens(output = word, input = spoken_words) %>%
unnest_tokens(output = word, input = spoken_words) %>%
anti_join(stop_words) %>%
anti_join(stop_words) %>%
count(name, word) %>%
count(name, word) %>%
filter(!is.na(word))
filter(!is.na(word))
sc_word
sc_word

## \# A tibble: 220,838 x 3

## \# A tibble: 220,838 x 3

## 1 '30s Reporter burns 1

## 1 '30s Reporter burns 1

## 2 '30s Reporter kinda 1

## 2 '30s Reporter kinda 1

## 3 '30s Reporter sensational 1

## 3 '30s Reporter sensational 1

## 4 1-Year-0ld Bart beer 1

## 4 1-Year-0ld Bart beer 1

## 5 1-Year-0ld Bart daddy 5

## 5 1-Year-0ld Bart daddy 5

## 6 1-Year-0ld Bart fat 1

## 6 1-Year-0ld Bart fat 1

## 7 1-Year-0ld Bart moustache 1

```
7 1-Year-0ld Bart moustache 1
```


## Tag the words with sentiments

```
SC_s <- sC_word %>%
 inner_join(get_sentiments("afinn"), by = "word")
```

SC_S
\#\# \# A tibble: 26,688 x 4

| \#\# | name | word | n value |  |
| :--- | :--- | :--- | ---: | ---: |
| \#\# | <chr> | <chr> | <int> <dbl> |  |
| \#\# | 1 | 1 -Year-01d Bart | nice | 1 |

\#\# \# ... with 26,678 more rows

## Examine Simpsons characters



## Examine Simpsons characters: Focus characters.

keep <- sc \%>\% count(name,
sort=TRUE) \%>\%
filter(!is.na(name)) \%>\%
filter(n > 999)
sc_s \%>\%
filter(name \%in\% keep\$name) \%>\%
group_by(name) \%>\%
summarise(m = mean(value)) \%>\%
arrange(m)
\#\# \# A tibble: 16 x 2
\#\# name m
\#\# <chr> <dbl>
\#\# 1 Nelson Muntz -0.519
\#\# 2 Grampa Simpson -0.429
\#\# 3 Homer Simpson -0.428
\#\# 4 Bart Simpson -0.391
\#\# 5 Chief Wiggum -0.388
\#\# 6 Lisa Simpson -0.388
\#\# 7 Marge Simpson -0.344

## Your turn: "8bsimpsons.Rmd"

1. Bart Simpson is featured at various ages. How has the sentiment of his words changed over his life?
2. Repeat the sentiment analysis with the NRC lexicon. What character is the most "angry"? "joyful"?

## Extension: Explore Harry

## Potter

I've included the harry potter data the code from the harry potter part of the lecture in "8b-harry-potter.Rmd", if you want to have a play around, I've got a few questions there.

## Further extension

Text Mining with R has an example comparing historical physics textbooks: Discourse on Floating Bodies by Galileo Galilei, Treatise on Light by Christiaan Huygens, Experiments with Alternate Currents of High Potential and High Frequency by Nikola Tesla, and Relativity: The Special and General Theory by Albert Einstein. All are available on the Gutenberg project.
Work your way through the comparison of physics books. It is section 3.4.

## Thanks

- Dr. Mine Çetinkaya-Rundel
- Dr. Julia Silge: https://github.com/juliasilge/tidytext-tutorial and https://juliasilge.com/blog/animal-crossing/
- Dr. Julia Silge and Dr. David Robinson: https://www.tidytextmining.com/

