ETC1010: Introduction to Data Analysis Week 2, part B

Week of Tidy Data + Style

Lecturer: *Nicholas Tierney* Department of Econometrics and Business Statistics ✓ ETC1010.Clayton-x@monash.edu 11th Mar 2020

Pharmaceutical Society of Australia

Update on how the class is delivered

How the class will now be delivered: Lectorials

- Lectorials are now recorded using Echo360
- **Do not come into class**, listen to the lectorials online and complete the exercises on rstudio cloud or locally.

How the class will now be delivered: Lab/quizzes

These will still be posted weekly, but we will give you an extra day or two to complete them

- Reading quizzes we expect you to complete before the lecture starts
 - So, Reading quiz 2A should be completed prior to lecture 2A
 - These will be closed shortly after lecture 2a starts (With some leeway as we transition into online classes to give you all a chance to get used to things)
- Lab quizzes require knowledge from the lecture these need to be completed after the lecture
 - So, lab quiz 2A should be completed after Lecture 2a
 - Again with the same leeway as for reading quiz 2a above

How the class will now be delivered

Assessignments

- Assignment 1 will be posted today at the end of class
- Assignments will be submitted online
 - Please get in touch with us (if you haven't already) if you are a group of 1, or cannot get in touch with your group members.

Other assessments

• We will update you on this in more detail, but in short, these will be delivered and submitted online

Consult times

These will now be delivered online via a link to a zoom meeting, or other online video meeting service

There is a lot of change

- There is a lot of change in the air, and things might seem uncertain.
- I am committed to helping you all learn how to do data analysis.
- Thank you all for your patience as we have changed this course. We are dealing with daily updates, and need to change on the fly.
- Perhaps now more than ever it is becoming so very relevant to our daily lives that we understand data, and that we can communicate it to others.
- Remember to get your information from reliable sources, like the WHO, the <u>Australian Government</u>, and see the latest data from <u>Johns</u> <u>Hopkins</u>.

Practice the most effective strategies we know

- 1. Wash your hands often, practice good cough & sneeze etiquette.
- 2. Try to touch your face as little as possible (mouth, nose, and eyes).
- 3. Practice social distancing (no hugs, kisses, handshakes, high fives)
- 4. Do not attend concerts, stage plays, sporting events, or any other mass entertainment events.
- 5. Refrain from visiting museums, exhibitions, movie theaters, night clubs, and other entertainment venues.
- 6. Stay away from social gatherings and events, (club meetings, religious services, parties)
- 7. Reduce travel to a minimum. Don't travel long distances if not absolutely necessary.
- 8. Do not use public transportation if not absolutely necessary.

Social distancing is hard

- How do we know it works?
- We have data from the last pandemic, the spanish flu.
- Places that practice social distancing vs those who did not had drastically different numbers:

There is a lot of change

To brighten things up, here are two youtubers I've been watching lately to destress and have "COVID19 free time"

- Lofty Pursuits
- SteveMRE1989

Your Turn: complete class survey

Available now on Ed, "Getting to know our class"

How to learn

I want to take some time to discuss ideas on learning, and how it ties into the course.

"I don't know what I don't know."

Competent Practitioner

Expert

"I can do it, but I may look things up."

Beginner

Competent Practitioner

Expert

"I don't know what I don't know." "I can do it, but I may look things up."

Beginner

Competent Practitioner

Expert

"I don't know what I don't know." "I can do it, but I may look things up."

"I don't know what I don't know."

Competent Practitioner

Expert

"I can do it, but I may look things up."

Competent Practitioner

Expert

No mental model

Useful mental model Elaborate mental models

<u>CC BY-SA RStudio</u>

Mental Models

Mental Model

a structure that organizes facts according to their relationships

Mental Model

a structure that organizes facts according to their relationships

recap

- Traffic Light System: Green = "good!"; Red = "Help!"
- R + Rstudio
- Tower of babel analogy for writing R code
- Functions are _
- columns in data frames are accessed with _ ?
- packages are installed with _
 ?
- packages are loaded with _ ?

- Why do we care about Reproducibility?
- Output + input of rmarkdown
- I have an assignment group
- I have made contact with my assignment group

The "pipe" operator - %>%

The symbol, %>% is referred to as the "pipe operator" What you need to know:

- Read it as "then"
- It passes the output along to the next function

```
data %>%
  select(age, height, hair_colour) %>%
  filter(nationality == "australian")
```

" Use the data, THEN select the variables (columns), age, height, and hair_colour THEN filter so nationality is equal to "australian" " That is all you need to know for the moment, but you can read <u>more</u> <u>here</u>

Problem solving (demo)

Some common questions you can ask yourself when something isn't working:

- Have I got my data?
- Does the thing exist? (Check environment)
- Have I run the code from the top down to where I am now?
- Did none of that work? (Now Restart R)
- Is the column I want there?
- Try using quotes "", or no quotes, or (last resort) backticks

Style guide

"Good coding style is like correct punctuation: you can manage without it, butitsuremakesthingseasiertoread." -- Hadley Wickham

- Style guide for this course is based on the Tidyverse style guide: <u>http://style.tidyverse.org/</u>
- There's more to it than what we'll cover today, we'll mention more as we introduce more functionality, and do a recap later in the semester

File names and code chunk labels

- Do not use spaces in file names, use or _ to separate words
- Use all lowercase letters

Good
ucb-admit.csv

Bad
UCB Admit.csv

Object names

- Use _ to separate words in object names
- Use informative but short object names
- Do not reuse object names within an analysis

Good acs_employed # Bad acs.employed acs2 acs_subset acs_subsetted_for_males

Spacing

- Put a space before and after all infix operators (=, +, -, <-, etc.), and when naming arguments in function calls.
- Always put a space after a comma, and never before (just like in regular English).

```
# Good
average <- mean(feet / 12 + inches, na.rm = TRUE)
# Bad
average<-mean(feet/12+inches,na.rm=TRUE)</pre>
```


- Always end a line with +
- Always indent the next line

```
# Good
ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram()
```

Bad
ggplot(diamonds,mapping=aes(x=price))+geom_histogram()

- Limit your code to 80 characters per line. This fits comfortably on a printed page with a reasonably sized font.
- Take advantage of RStudio editor's auto formatting for indentation at line breaks.

• Use <- not =

# Good		
× <- 2		
# Bad		
x = 2		

Quotes

Use ", not ', for quoting text. The only exception is when the text already contains double quotes and no single quotes.

```
ggplot(diamonds, mapping = aes(x = price)) +
geom_histogram() +
# Good
labs(title = "`Shine bright like a diamond`",
# Good
        x = "Diamond prices",
# Bad
        y = 'Frequency')
```


Overview

- filter()
- select()
- mutate()
- arrange()

- group_by()
- summarise()
- count()

Artwork by @allison_horst

tidy

tidyverse

PUTT

avail_pkg <- available.packages()
dim(avail_pkg)
[1] 15367 17</pre>

As of 2020-03-18 there are 15367 R packages available

Name clashes

library(tidyverse)

##		- Attach	ing nackages					
// //		///////	ing puckuyeo					
##	\checkmark	ggplot2	3.3.0	\checkmark	purrr	0.3.3.9000		
##	\checkmark	tibble	2.1.3	\checkmark	dplyr	0.8.5		
##	\checkmark	tidyr	1.0.2	\checkmark	stringr	1.4.0		
##	\checkmark	readr	1.3.1	\checkmark	forcats	0.5.0		
##		– Confli	cts ———					
##	X	dplyr::f	filter()	masks	stats::	filter()		
##	X	dplyr::g	<pre>roup_rows()</pre>	masks	kableEx	tra::group_	rows()	
##	X	purrr::i	s_null()	masks	testtha	t::is_null(()	
##	X	dplyr::1	ag()	masks	stats::	lag()		
##	Х	dplyr::m	natches()	masks	tidyr::	<pre>matches(),</pre>	<pre>testthat::matches()</pre>	

Many R packages

- A blessing & a curse!
- So many packages available, it can make it hard to choose!
- Many of the packages are designed to solve a specific problem
- The tidyverse is designed to work with many other packages following a consistent philosophy
- What this means is that you shouldn't notice it!

Let's talk about data

Yum

Three oils, two batches

Five scales

RANCID

For 10 weeks

Example: french fries

- Experiment in Food Sciences at Iowa State University.
- Aim: find if cheaper oil could be used to make hot chips
- Question: Can people distinguish between chips fried in the new oils relative to those current market leader oil.
- 12 tasters recruited
- Each sampled two chips from each batch
- Over a period of ten weeks.

Same oil kept for a period of 10 weeks! May be a bit gross!

Example: french-fries - pivoting into long form

french_fries <- read_csv("data/french_fries.csv")
french_fries</pre>

```
## # A tibble: 6 x 9
##
   time treatment subject rep potato buttery grassy rancid painty
   <db1>
      ##
                3
                 1 2.9
                            0
                                0
                                     5.5
## 1
     1
           1
                                    0
                3
## 2
   1
           1
                   2 14
                           0
                                0
                                    1.1
                                        0
   1
           1
                    1 11
                            6.4
                                0
                                    0
## 3
               10
                                        0
                    2 9.9
                            5.9 2.9
                                    2.2
## 4
   1
           1
               10
                                        0
## 5
                   1 1.2
                            0.1
                                    1.1
                                        5.1
     1
           1
               15
                                0
## 6
               15
                    2
                      8.8
                            3
                                3.6
           1
                                    1.5
                                        2.3
```

This data set was brought to R by Hadley Wickham, and was one of the problems that inspired the thinking about tidy data and the tidyverse set of tools

Example: french-fries - pivoting into long form

fries_long

##	# A	tibbl	le: 3,	480 x	6			
##		time	treat	ment s	subjec	ct	rep	ty
##	•	<dbl></dbl>	<	dbl>	<dbl< th=""><th> ></th><th><dbl></dbl></th><th><c < th=""></c <></th></dbl<>	>	<dbl></dbl>	<c < th=""></c <>
##	1	1		1		3	1	ро
##	2	1		1		3	1	bu
##	3	1		1		3	1	gra
##	4	1		1		3	1	rai
##	5	1		1		3	1	pa
##	6	1		1		3	2	ро
##	7	1		1		3	2	bu
##	8	1		1		3	2	gra
##	9	1		1		3	2	rai
##	10	1		1		3	2	pa
##	#	with	3,470	more	rows			

Example: french-fries - pivoting back

fries_long

##	# A	LTDD	Le: 3,2	400 X	0			
##		time	treatm	nent	subjed	ct	rep	ty
##	<	<dbl></dbl>	<(dbl>	<db]< td=""><td>[></td><td><dbl></dbl></td><td><c < td=""></c <></td></db]<>	[>	<dbl></dbl>	<c < td=""></c <>
##	1	1		1		3	1	ро
##	2	1		1		3	1	bu
##	3	1		1		3	1	gra
##	4	1		1		3	1	rai
##	5	1		1		3	1	pa:
##	6	1		1		3	2	ро
##	7	1		1		3	2	bu
##	8	1		1		3	2	gra
##	9	1		1		3	2	rai
##	10	1		1		3	2	pa
##	#	with	3,470	more	rows			

fr	fries_long %>%										
F	<pre>pivot_wider(names_from = type,</pre>										
	<pre>values_from = rating)</pre>										
##	# A	tibb	le: 696 x	9							
##		time	treatment	subject	rep p	0					
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<(
##	1	1	1	3	1						
##	2	1	1	3	2						
##	3	1	1	10	1						
##	4	1	1	10	2						
##	5	1	1	15	1						
##	6	1	1	15	2						
##	7	1	1	16	1						
##	8	1	1	16	2						
##	9	1	1	19	1						
##	10	1	1	19	2						
##	#	with	686 more	rows							

choose observations from your data

filter():example

fries_long %>%

filter(subject == 10)

A tibble: 300 x 6

##		time	treatment	subject	rep	type	rating
##	<	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1	1	10	1	potato	11
##	2	1	1	10	1	buttery	6.4
##	3	1	1	10	1	grassy	0
##	4	1	1	10	1	rancid	0
##	5	1	1	10	1	painty	0
##	6	1	1	10	2	potato	9.9
##	7	1	1	10	2	buttery	5.9
##	8	1	1	10	2	grassy	2.9
##	9	1	1	10	2	rancid	2.2
##	10	1	1	10	2	painty	0
##	#	with	290 more	rows			

filter(): details

Filtering requires comparison to find the subset of observations of interest. What do you think the following mean?

- subject != 10
- x > 10
- x >= 10
- class %in% c("A", "B")
- !is.na(y)

filter(): details

subject != 10

Find rows corresponding to all subjects except subject 10

x > 10

find all rows where variable x has values bigger than 10

x >= 10

finds all rows variable x is greater than or equal to 10.

finds all rows where variable class is either A or B

```
!is.na(y)
```

finds all rows that DO NOT have a missing value for variable y

Your turn: open french-fries.Rmd

Filter the french fries data to have:

- only week 1
- oil type 1 (oil type is called treatment)
- oil types 1 and 3 but not 2
- weeks 1-4 only

French Fries Filter: only week 1

fries_long %>% filter(time == 1)

A tibble: 360 x 6

##		time	treatment	subject	rep	type	rating
##	<	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1	1	3	1	potato	2.9
##	2	1	1	3	1	buttery	0
##	3	1	1	3	1	grassy	0
##	4	1	1	3	1	rancid	0
##	5	1	1	3	1	painty	5.5
##	6	1	1	3	2	potato	14
##	7	1	1	3	2	buttery	0
##	8	1	1	3	2	grassy	0
##	9	1	1	3	2	rancid	1.1
##	10	1	1	3	2	painty	0
##	#	with	350 more i	rows			

French Fries Filter: oil type 1

fries_long %>% filter(treatment == 1)

A tibble: 1,160 x 6

##		time	treatme	ent	subjea	ct	rep	type	rating
##	<	<dbl></dbl>	<dl< td=""><td>b1></td><td><db]< td=""><td>[></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td></db]<></td></dl<>	b1>	<db]< td=""><td>[></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td></db]<>	[>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1		1		3	1	potato	2.9
##	2	1		1		3	1	buttery	0
##	3	1		1		3	1	grassy	0
##	4	1		1		3	1	rancid	Θ
##	5	1		1		3	1	painty	5.5
##	6	1		1		3	2	potato	14
##	7	1		1		3	2	buttery	0
##	8	1		1		3	2	grassy	Θ
##	9	1		1		3	2	rancid	1.1
##	10	1		1		3	2	painty	Θ
##	#	with	1,150 r	nore	rows				

French Fries Filter: oil types 1 and 3 but not 2

fries_long %>% filter(treatment != 2)

A tibble: 2,320 x 6

##		time	treat	ment	subjea	ct	rep	type	rating
##	<	<dbl></dbl>	< (dbl>	<db1< td=""><td>[></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td></db1<>	[>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1		1		3	1	potato	2.9
##	2	1		1		3	1	buttery	0
##	3	1		1		3	1	grassy	0
##	4	1		1		3	1	rancid	0
##	5	1		1		3	1	painty	5.5
##	6	1		1		3	2	potato	14
##	7	1		1		3	2	buttery	0
##	8	1		1		3	2	grassy	0
##	9	1		1		3	2	rancid	1.1
##	10	1		1		3	2	painty	0
##	#	with	2,310	more	rows				

French Fries Filter: weeks 1-4 only

fries_long %>% filter(time %in% c("1", "2", "3", "4"))

A tibble: 1,440 x 6

##		time	treatn	nent	subjed	ct	rep	type	rating
##	<	<dbl></dbl>	<0	dbl>	<db1< td=""><td>[></td><td><dbl></dbl></td><td><chr></chr></td><td><dbl></dbl></td></db1<>	[>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1		1		3	1	potato	2.9
##	2	1		1		3	1	buttery	0
##	3	1		1		3	1	grassy	0
##	4	1		1		3	1	rancid	0
##	5	1		1		3	1	painty	5.5
##	6	1		1		3	2	potato	14
##	7	1		1		3	2	buttery	Θ
##	8	1		1		3	2	grassy	Θ
##	9	1		1		3	2	rancid	1.1
##	10	1		1		3	2	painty	Θ
##	#	with	1,430	more	rows				

about %in%

[demo]

select()

- Chooses which variables to keep in the data set.
- Useful when there are many variables but you only need some of them for an analysis.

select(): a comma separated list of variables, by name.

fre	french_fries %>%							
Ś	seled	ct(ti	me,					
		tr	eatm	ent,				
		su	bjec	t)				
##	# A	tibbl	le: 0	696 x	3			
##		time	trea	atmer	nt :	subject		
##	<	<dbl></dbl>		<dbl< td=""><td>></td><td><dbl></dbl></td></dbl<>	>	<dbl></dbl>		
##	1	1			1	3		
##	2	1			1	3		
##	3	1			1	10		
##	4	1			1	10		
##	5	1			1	15		
##	6	1			1	15		
##	7	1			1	16		
##	8	1			1	16		
##	9	1			1	19		
##	10	1			1	19		
##	#	with	686	more	e ro	OWS		

select(): drop selected variables by prefixing with -

french_fries %>% select(-time, -treatment, -subject) ## # A tibble: 696 x 6 ## rep potato buttery grassy rancid painty ## <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 2.9 0 5.5 ## 1 0 0 ## 2 2 14 0 0 1.1 0 ## 3 1 11 6.4 0 0 0 2 9.9 5.9 2.9 2.2 0 ## 4 ## 5 1 1.2 0.1 0 1.1 5.1 ## 6 2 8.8 3 3.6 1.5 2.3 7 9 2.6 0.4 0.1 0.2 ## 1 ## 8 2 8.2 4.4 0.3 1.4 4 ## 7 3.2 0 4.9 3.2 9 1 10 2 13 3.1 4.3 ## 0 10.3 ## # ... with 686 more rows

select()

Inside select() you can use text-matching of the names like starts_with(), ends_with(), contains(), matches(), or everything()

french_fries %>%								
select(co	ntains(" <mark>e</mark> "))						
## # A tibb.	le: 696 x :	5						
## time	treatment	subject	rep	buttery				
## <dbl></dbl>	<dbl></dbl>	<db1></db1>	<dbl></dbl>	<dbl></dbl>				
## 1 1	1	3	1	0				
## 2 1	1	3	2	0				
## 3 1	1	10	1	6.4				
## 4 1	1	10	2	5.9				
## 5 1	1	15	1	0.1				
## 6 1	1	15	2	3				
## 7 1	1	16	1	2.6				
## 8 1	1	16	2	4.4				
## 9 1	1	19	1	3.2				
## 10 1	1	19	2	0				
## # with	686 more	rows						

select():Using it

You can use the colon, :, to choose variables in order of the columns

french_frie	es %>%	
select(t:	ime:subject)	
## # A tibb	ole: 696 x 3	
## time	e treatment sub	ject
## <dbl></dbl>	<pre><dbl><</dbl></pre>	dbl>
## 1 1	1	3
## 2 1	1	3
## 3 1	1	10
## 4 1	1	10
## 5 1	1	15
## 6 1	1	15
## 7 1	1	16
## 8 1	1	16
## 9 1	1	19
## 10 1	1	19
## # with	n 686 more rows	

Your turn: back to the french fries data

- select() time, treatment and rep
- select() subject through to rating
- drop subject

mutate(): create a new variable; keep existing ones

french_fries

A tibble: 696 x 9

##		time	treatment	subject	rep	potato	buttery	grassy	rancid	painty
##		<dbl></dbl>								
##	1	1	1	3	1	2.9	0	0	0	5.5
##	2	1	1	3	2	14	0	0	1.1	0
##	3	1	1	10	1	11	6.4	0	0	0
##	4	1	1	10	2	9.9	5.9	2.9	2.2	0
##	5	1	1	15	1	1.2	0.1	0	1.1	5.1
##	6	1	1	15	2	8.8	3	3.6	1.5	2.3
##	7	1	1	16	1	9	2.6	0.4	0.1	0.2
##	8	1	1	16	2	8.2	4.4	0.3	1.4	4
##	9	1	1	19	1	7	3.2	0	4.9	3.2
##	10	1	1	19	2	13	0	3.1	4.3	10.3
##	#	with	686 more i	rows						

mutate(): create a new variable; keep existing ones

french_fries %>%											
<pre>mutate(rainty = rancid + painty)</pre>											
## # A tibble: 696 x 10											
##		time	treatment	subject	rep	potato	buttery	grassy	rancid	painty	rainty
##		<dbl></dbl>									
##	1	1	1	3	1	2.9	0	0	0	5.5	5.5
##	2	1	1	3	2	14	0	0	1.1	Θ	1.1
##	3	1	1	10	1	11	6.4	0	0	Θ	0
##	4	1	1	10	2	9.9	5.9	2.9	2.2	Θ	2.2
##	5	1	1	15	1	1.2	0.1	0	1.1	5.1	6.20
##	6	1	1	15	2	8.8	3	3.6	1.5	2.3	3.8
##	7	1	1	16	1	9	2.6	0.4	0.1	0.2	0.3
##	8	1	1	16	2	8.2	4.4	0.3	1.4	4	5.4
##	9	1	1	19	1	7	3.2	0	4.9	3.2	8.1
##	10	1	1	19	2	13	0	3.1	4.3	10.3	14.6
##	#	. with	686 more	rows							

Your turn: french fries

Compute a new variable called lrating by taking a log of the rating

summarise(): boil data down to one row observation

fries_long

A tibble: 6 x 6

##		time	treatment	subject	rep	type	rating
##		<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<dbl></dbl>	<chr></chr>	<dbl></dbl>
##	1	1	1	3	1	potato	2.9
##	2	1	1	3	1	buttery	0
##	3	1	1	3	1	grassy	0
##	4	1	1	3	1	rancid	0
##	5	1	1	3	1	painty	5.5
##	6	1	1	3	2	potato	14

fries_long %>%

```
summarise(rating = mean(rating, na.rm = TRUE))
## # A tibble: 1 x 1
## rating
## <dbl>
## 1 3.16
```

What if we want a summary for each type?

use group_by()

69/96

Using summarise() + group_by()

Produce summaries for every group:

```
fries_long %>%
  group_by(type) %>%
  summarise(rating = mean(rating, na.rm=TRUE))
## # A tibble: 5 x 2
## type rating
## <chr> <dbl>
## 1 buttery 1.82
## 2 grassy 0.664
## 3 painty 2.52
## 4 potato 6.95
## 5 rancid 3.85
```

Your turn: Back to frenchfries.Rmd

- Compute the average rating by subject
- Compute the average rancid rating per week

french fries answers

fries_long %>%								
Q	grou	up_by(sub	ject) %	% >%				
5	sumr	marise(ra	ting =	<pre>mean(rating,</pre>	na.rm=TRUE))			
##	# /	tibble:	12 x 2					
##		subject	rating					
##		<dbl></dbl>	<dbl></dbl>					
##	1	3	2.46					
##	2	10	4.24					
##	3	15	2.16					
##	4	16	3.00					
##	5	19	4.54					
##	6	31	4.00					
##	7	51	4.39					
##	8	52	2.72					
##	9	63	3.48					
##	10	78	1.94					
##	11	79	1.94					
##	12	86	2.94					
french fries answers

```
fries_long %>%
 filter(type == "rancid") %>%
 group_by(time) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
## # A tibble: 10 x 2
##
  time rating
## <dbl> <dbl>
## 1
        1 2.36
## 2 2 2.85
##
  3 3 3.72
  4 4 3.60
##
##
  5 5 3.53
  6 6 4.08
##
      7 3.89
##
  7
##
  8
        8 4.27
      9 4.67
##
  9
## 10
       10
          6.07
```

arrange(): orders data by a given variable.

Useful for display of results (but there are other uses!)

```
fries_long %>%
  group_by(type) %>%
  summarise(rating = mean(rating, na.rm=TRUE))
## # A tibble: 5 x 2
## type rating
## <chr> <dbl>
## 1 buttery 1.82
## 2 grassy 0.664
## 3 painty 2.52
## 4 potato 6.95
## 5 rancid 3.85
```

arrange()

```
fries_long %>%
  group_by(type) %>%
  summarise(rating = mean(rating, na.rm=TRUE)) %>%
  arrange(rating)
## # A tibble: 5 x 2
## type rating
## <chr> <dbl>
## 1 grassy 0.664
## 2 buttery 1.82
## 3 painty 2.52
## 4 rancid 3.85
## 5 potato 6.95
```

Your turn: frenchfries.Rmd - arrange

- Arrange the average rating by type in decreasing order
- Arrange the average subject rating in order lowest to highest.

arrange() answers

```
fries_long %>%
  group_by(type) %>%
  summarise(rating = mean(rating, na.rm=TRUE)) %>%
  arrange(desc(rating))
## # A tibble: 5 x 2
## type rating
## <chr> <dbl>
## 1 potato 6.95
## 2 rancid 3.85
## 3 painty 2.52
## 4 buttery 1.82
## 5 grassy 0.664
```

arrange() answers

```
fries_long %>%
 group_by(subject) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>%
 arrange(rating)
## # A tibble: 12 x 2
##
     subject rating
##
      <dbl> <dbl>
##
          78 1.94
  1
##
  2
         79 1.94
##
  3
         15 2.16
##
  4
          3 2.46
##
  5
          52 2.72
##
   6
          86 2.94
##
  7
         16 3.00
##
  8
          63
              3.48
##
   9
          31
              4.00
##
  10
          10 4.24
##
  11
          51 4.39
## 12
          19
              4.54
```

count() the number of things in a given column

fries_long %>%												
<pre>count(type, sort = TRUE)</pre>												
##	#	A tibble	e: 5 x 2									
##		type	п									
##		<chr></chr>	<int></int>									
##	1	buttery	696									
##	2	grassy	696									
##	3	painty	696									
##	4	potato	696									
##	5	rancid	696									

Your turn: count()

- count the number of subjects
- count the number of types

French Fries: Putting it together to problem solve

French Fries: Are ratings similar?

```
fries_long %>%
 group_by(type) %>%
 summarise(
   m = mean(rating,
            na.rm = TRUE),
   sd = sd(rating,
           na.rm = TRUE)) %>%
 arrange(-m)
## # A tibble: 5 x 3
## type m sd
## <chr> <dbl> <dbl>
## 1 potato 6.95 3.58
## 2 rancid 3.85 3.78
## 3 painty 2.52 3.39
## 4 buttery 1.82 2.41
## 5 grassy 0.664 1.32
```

The scales of the ratings are quite different. Mostly the chips are rated highly on potato'y, but low on grassy.

French Fries: Are ratings similar?

French Fries: Are reps like each other?

fries_spread <- fries_long %>%
 pivot_wider(names_from = rep,
 values_from = rating)

fries_spread

A tibble: 1,740 x 6

##		time	treat	nent	subjec	t	type	`1`	`2`	
##	<	<dbl></dbl>	<(dbl>	<dbl.< td=""><td>></td><td><chr></chr></td><td><dbl></dbl></td><td><dbl></dbl></td><td></td></dbl.<>	>	<chr></chr>	<dbl></dbl>	<dbl></dbl>	
##	1	1		1		3	potato	2.9	14	
##	2	1		1		3	buttery	0	0	
##	3	1		1		3	grassy	0	0	
##	4	1		1		3	rancid	0	1.1	
##	5	1		1		3	painty	5.5	0	
##	6	1		1	1	0	potato	11	9.9	
##	7	1		1	1	0	buttery	6.4	5.9	
##	8	1		1	7	0	grassy	0	2.9	
##	9	1		1	7	0	rancid	0	2.2	
##	10	1		1	7	0	painty	0	0	
##	#	with	1,730	more	rows					

French Fries: Are reps like each other?

summarise(fries_spread,

French Fries:

French Fries: Replicates by rating type

```
fries_spread %>%
  group_by(type) %>%
  summarise(r = cor(x = 1))
                   y = 2^{,}
                   use = "complete.obs"))
## # A tibble: 5 x 2
## type r
## <chr> <dbl>
## 1 buttery 0.650
## 2 grassy 0.239
## 3 painty 0.479
## 4 potato 0.616
## 5 rancid 0.391
```

French Fries: Replicates by rating type

ggplot(fries_spread, aes(x=`1`, y=`2`)) +
geom_point() + facet_wrap(~type, ncol = 5)

When to use quotes? "', nothing, or backtick?

When to use quotes? "', nothing, or backtick?

- Use no quotes (bare variable names) when the variable exists
- Otherwise use strings

Example:

VS

When to use quotes? " ', nothing, or backtick?

Variables with unusual names (starting with numbers, spaces, or containing special characters like !@#\$%^&*() – need to be referenced with backticks:

```
data %>% select(`name with spaces`)
```

Lab exercise: Exploring data PISA data

Open pisa.Rmd on rstudio cloud.

Assignment 1

It will be launched later today

- Instructions to appear on ED and the course website **When is the assignment due?**
- 1st April, 2020 5pm

How do I complete the assignment?

- You should complete as much of the assignment as you can by yourself
- Then once you have done as much as you can, work with your group to

I don't have a group / I can't get in contact with my group

- If you don't have a group, make sure you have filled in this form <u>here</u> (it has also been posted on ED)
- I will assign everyone into a group who has filled in the form

Assignment 1

How do I stay in touch with my group?

- Get in touch with your group and decide how you will work together
 - you can use zoom through Monash to create video/audio group calls
 - you could create a Slack team
 - You can communicate via email, WhatsApp, Messenger, whatever you all agree on

How do I submit the assignment?

• You submit the assignment via ED - instructions to follow

Time to take the lab quiz.