
ETC1010: Introduction to Data AnalysisETC1010: Introduction to Data Analysis
Week 2, part BWeek 2, part B

Week of Tidy Data + Style

Lecturer: Nicholas Tierney
Department of Econometrics and Business Statistics

 ETC1010.Clayton-x@monash.edu
11th Mar 2020

Update on how the class is
delivered

2/96

How the class will now be delivered: Lectorials
Lectorials are now recorded using Echo360
Do not come into class, listen to the lectorials online and complete
the exercises on rstudio cloud or locally.

3/96

How the class will now be delivered: Lab/quizzes
These will still be posted weekly, but we will give you an extra day or
two to complete them

Reading quizzes we expect you to complete before the lecture
starts

So, Reading quiz 2A should be completed prior to lecture 2A
These will be closed shortly after lecture 2a starts (With some
leeway as we transition into online classes to give you all a
chance to get used to things)

Lab quizzes require knowledge from the lecture - these need to be
completed after the lecture

So, lab quiz 2A should be completed after Lecture 2a
Again with the same leeway as for reading quiz 2a above

4/96

How the class will now be delivered
Assessignments

Assignment 1 will be posted today at the end of class
Assignments will be submitted online

Please get in touch with us (if you haven’t already) if you are a
group of 1, or cannot get in touch with your group members.

Other assessments
We will update you on this in more detail, but in short, these will be
delivered and submitted online

Consult times
These will now be delivered online via a link to a zoom meeting, or
other online video meeting service

5/96

There is a lot of change
There is a lot of change in the air, and things might seem uncertain.
I am committed to helping you all learn how to do data analysis.
Thank you all for your patience as we have changed this course. We
are dealing with daily updates, and need to change on the �y.
Perhaps now more than ever it is becoming so very relevant to our
daily lives that we understand data, and that we can communicate it
to others.
Remember to get your information from reliable sources, like the
WHO, the Australian Government, and see the latest data from Johns
Hopkins.

6/96

https://www.who.int/emergencies/diseases/novel-coronavirus-2019/advice-for-public
https://www.health.gov.au/news/health-alerts/novel-coronavirus-2019-ncov-health-alert
https://www.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

Practice the most effective strategies we know
1. Wash your hands often, practice good cough & sneeze etiquette.
2. Try to touch your face as little as possible (mouth, nose, and eyes).
3. Practice social distancing (no hugs, kisses, handshakes, high �ves)
4. Do not attend concerts, stage plays, sporting events, or any other

mass entertainment events.
5. Refrain from visiting museums, exhibitions, movie theaters, night

clubs, and other entertainment venues.
6. Stay away from social gatherings and events, (club meetings,

religious services, parties)
7. Reduce travel to a minimum. Don't travel long distances if not

absolutely necessary.
8. Do not use public transportation if not absolutely necessary.

7/96

Social distancing is hard
How do we know it works?
We have data from the last pandemic, the spanish �u.
Places that practice social distancing vs those who did not had
drastically different numbers:

(from (Hatchett et al, 2007)) 8/96

https://www.pnas.org/content/104/18/7582

There is a lot of change
To brighten things up, here are two youtubers I’ve been watching
lately to destress and have “COVID19 free time”

Lofty Pursuits
SteveMRE1989

9/96

https://www.youtube.com/watch?v=FYsqZXHVnI8
https://www.youtube.com/watch?v=hkz6kGQWCHU&t=6s

Your Turn: complete class
survey

Available now on Ed, "Getting to know our class"

10/96

How to learn
I want to take some time to discuss ideas on learning, and how it ties
into the course.

11/96

12/96

13/96

14/96

15/96

16/96

17/96

18/96

19/96

20/96

21/96

22/96

23/96

(demo)

24/96

Tra�c Light System: Green =
"good!" ; Red = "Help!"
R + Rstudio
Tower of babel analogy for
writing R code
Functions are _
columns in data frames are
accessed with _ ?
packages are installed with _
?
packages are loaded with _ ?

Why do we care about
Reproducibility?
Output + input of rmarkdown
I have an assignment group
I have made contact with my
assignment group

recap

25/96

The "pipe" operator - %>%
The symbol, %>% is referred to as the "pipe operator"
What you need to know:

Read it as "then"
It passes the output along to the next function

data %>%
 select(age, height, hair_colour) %>%
 filter(nationality == "australian")

" Use the data, THEN select the variables (columns), age, height,
and hair_colour THEN �lter so nationality is equal to "australian" "
That is all you need to know for the moment, but you can read more
here

26/96

https://r4ds.had.co.nz/pipes.html

Problem solving (demo)
Some common questions you can ask yourself when something isn't
working:

Have I got my data?
Does the thing exist? (Check environment)
Have I run the code from the top down to where I am now?
Did none of that work? (Now Restart R)
Is the column I want there?
Try using quotes "", or no quotes, or (last resort) backticks

27/96

Style guide
"Good coding style is like correct punctuation: you
can manage without it,
butitsuremakesthingseasiertoread." -- Hadley
Wickham

Style guide for this course is based on the Tidyverse style guide:
http://style.tidyverse.org/
There's more to it than what we'll cover today, we'll mention more as
we introduce more functionality, and do a recap later in the semester

28/96

http://style.tidyverse.org/

File names and code chunk labels
Do not use spaces in �le names, use - or _ to separate words
Use all lowercase letters

Good
ucb-admit.csv

Bad
UCB Admit.csv

29/96

Object names
Use _ to separate words in object names
Use informative but short object names
Do not reuse object names within an analysis

Good
acs_employed

Bad
acs.employed
acs2
acs_subset
acs_subsetted_for_males

30/96

Spacing
Put a space before and after all in�x operators (=, +, -, <-, etc.), and
when naming arguments in function calls.
Always put a space after a comma, and never before (just like in
regular English).

Good
average <- mean(feet / 12 + inches, na.rm = TRUE)

Bad
average<-mean(feet/12+inches,na.rm=TRUE)

31/96

ggplot
Always end a line with +
Always indent the next line

Good
ggplot(diamonds, mapping = aes(x = price)) +
 geom_histogram()

Bad
ggplot(diamonds,mapping=aes(x=price))+geom_histogram()

32/96

Long lines
Limit your code to 80 characters per line. This �ts comfortably on a
printed page with a reasonably sized font.
Take advantage of RStudio editor's auto formatting for indentation at
line breaks.

33/96

Assignment
Use <- not =

Good
x <- 2

Bad
x = 2

34/96

Quotes
Use ", not ', for quoting text. The only exception is when the text
already contains double quotes and no single quotes.
ggplot(diamonds, mapping = aes(x = price)) +
 geom_histogram() +
 # Good
 labs(title = "`Shine bright like a diamond`",
 # Good
 x = "Diamond prices",
 # Bad
 y = 'Frequency')

35/96

Source: Artwork by @allison_horst
36/96

filter()

select()

mutate()

arrange()

group_by()

summarise()

count()

Overview

37/96

Artwork by @allison_horst
38/96

R Packages
avail_pkg <- available.packages()
dim(avail_pkg)
[1] 15367 17

As of 2020-03-18 there are 15367 R packages available

39/96

Name clashes
library(tidyverse)
── Attaching packages ───
✓ ggplot2 3.3.0 ✓ purrr 0.3.3.9000
✓ tibble 2.1.3 ✓ dplyr 0.8.5
✓ tidyr 1.0.2 ✓ stringr 1.4.0
✓ readr 1.3.1 ✓ forcats 0.5.0
── Conflicts ──
x dplyr::filter() masks stats::filter()
x dplyr::group_rows() masks kableExtra::group_rows()
x purrr::is_null() masks testthat::is_null()
x dplyr::lag() masks stats::lag()
x dplyr::matches() masks tidyr::matches(), testthat::matches()

40/96

Many R packages
A blessing & a curse!
So many packages available, it can make it hard to choose!
Many of the packages are designed to solve a speci�c problem
The tidyverse is designed to work with many other packages
following a consistent philosophy
What this means is that you shouldn't notice it!

41/96

Let's talk about data

42/96

43/96

Example: french fries
Experiment in Food Sciences at Iowa State University.
Aim: �nd if cheaper oil could be used to make hot chips
Question: Can people distinguish between chips fried in the new oils
relative to those current market leader oil.
12 tasters recruited
Each sampled two chips from each batch
Over a period of ten weeks.

Same oil kept for a period of 10 weeks! May be a bit gross!

44/96

Example: french-fries - pivoting into long form
french_fries <- read_csv("data/french_fries.csv")
french_fries

A tibble: 6 x 9
time treatment subject rep potato buttery grassy rancid painty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0 0 0 5.5
2 1 1 3 2 14 0 0 1.1 0
3 1 1 10 1 11 6.4 0 0 0
4 1 1 10 2 9.9 5.9 2.9 2.2 0
5 1 1 15 1 1.2 0.1 0 1.1 5.1
6 1 1 15 2 8.8 3 3.6 1.5 2.3

This data set was brought to R by Hadley Wickham, and was one of
the problems that inspired the thinking about tidy data and the
tidyverse set of tools

45/96

fries_long <- french_fries %>%
 pivot_longer(cols = potato:painty,
 names_to = "type",
 values_to = "rating")
fries_long

Example: french-fries - pivoting into long form
A tibble: 3,480 x 6
time treatment subject rep typ
<dbl> <dbl> <dbl> <dbl> <ch
1 1 1 3 1 pot
2 1 1 3 1 but
3 1 1 3 1 gra
4 1 1 3 1 ran
5 1 1 3 1 pai
6 1 1 3 2 pot
7 1 1 3 2 but
8 1 1 3 2 gra
9 1 1 3 2 ran
10 1 1 3 2 pai
… with 3,470 more rows

46/96

Example: french-fries - pivoting back
fries_long
A tibble: 3,480 x 6
time treatment subject rep typ
<dbl> <dbl> <dbl> <dbl> <ch
1 1 1 3 1 pot
2 1 1 3 1 but
3 1 1 3 1 gra
4 1 1 3 1 ran
5 1 1 3 1 pai
6 1 1 3 2 pot
7 1 1 3 2 but
8 1 1 3 2 gra
9 1 1 3 2 ran
10 1 1 3 2 pai
… with 3,470 more rows

fries_long %>%
 pivot_wider(names_from = type,
 values_from = rating)
A tibble: 696 x 9
time treatment subject rep pot
<dbl> <dbl> <dbl> <dbl> <d
1 1 1 3 1
2 1 1 3 2
3 1 1 10 1
4 1 1 10 2
5 1 1 15 1
6 1 1 15 2
7 1 1 16 1
8 1 1 16 2
9 1 1 19 1
10 1 1 19 2
… with 686 more rows

47/96

filter()
choose observations from your data

48/96

filter(): example
fries_long %>%
 filter(subject == 10)
A tibble: 300 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 10 1 potato 11
2 1 1 10 1 buttery 6.4
3 1 1 10 1 grassy 0
4 1 1 10 1 rancid 0
5 1 1 10 1 painty 0
6 1 1 10 2 potato 9.9
7 1 1 10 2 buttery 5.9
8 1 1 10 2 grassy 2.9
9 1 1 10 2 rancid 2.2
10 1 1 10 2 painty 0
… with 290 more rows

49/96

filter(): details
Filtering requires comparison to �nd the subset of observations of
interest. What do you think the following mean?

subject != 10

x > 10

x >= 10

class %in% c("A", "B")

!is.na(y)

03:00
50/96

filter(): details
subject != 10
Find rows corresponding to all subjects except subject 10

x > 10

�nd all rows where variable x has values bigger than 10

x >= 10

�nds all rows variable x is greater than or equal to 10.

class %in% c("A", "B")

�nds all rows where variable class is either A or B

!is.na(y)

�nds all rows that DO NOT have a missing value for variable y
51/96

Your turn: open french-fries.Rmd
Filter the french fries data to have:

only week 1
oil type 1 (oil type is called treatment)
oil types 1 and 3 but not 2
weeks 1-4 only

52/96

French Fries Filter: only week 1
fries_long %>% filter(time == 1)
A tibble: 360 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0
9 1 1 3 2 rancid 1.1
10 1 1 3 2 painty 0
… with 350 more rows

53/96

French Fries Filter: oil type 1
fries_long %>% filter(treatment == 1)
A tibble: 1,160 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0
9 1 1 3 2 rancid 1.1
10 1 1 3 2 painty 0
… with 1,150 more rows

54/96

French Fries Filter: oil types 1 and 3 but not 2
fries_long %>% filter(treatment != 2)
A tibble: 2,320 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0
9 1 1 3 2 rancid 1.1
10 1 1 3 2 painty 0
… with 2,310 more rows

55/96

French Fries Filter: weeks 1-4 only
fries_long %>% filter(time %in% c("1", "2", "3", "4"))
A tibble: 1,440 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14
7 1 1 3 2 buttery 0
8 1 1 3 2 grassy 0
9 1 1 3 2 rancid 1.1
10 1 1 3 2 painty 0
… with 1,430 more rows

56/96

about %in%
[demo]

57/96

select()
Chooses which variables to keep in the data set.
Useful when there are many variables but you only need some of
them for an analysis.

58/96

select(): a comma separated list of variables, by name.
french_fries %>%
 select(time,
 treatment,
 subject)
A tibble: 696 x 3
time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 1 1 3
3 1 1 10
4 1 1 10
5 1 1 15
6 1 1 15
7 1 1 16
8 1 1 16
9 1 1 19
10 1 1 19
… with 686 more rows

59/96

select(): drop selected variables by pre�xing with -
french_fries %>%
 select(-time,
 -treatment,
 -subject)
A tibble: 696 x 6
rep potato buttery grassy rancid painty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 2.9 0 0 0 5.5
2 2 14 0 0 1.1 0
3 1 11 6.4 0 0 0
4 2 9.9 5.9 2.9 2.2 0
5 1 1.2 0.1 0 1.1 5.1
6 2 8.8 3 3.6 1.5 2.3
7 1 9 2.6 0.4 0.1 0.2
8 2 8.2 4.4 0.3 1.4 4
9 1 7 3.2 0 4.9 3.2
10 2 13 0 3.1 4.3 10.3
… with 686 more rows

60/96

Inside select() you can
use text-matching of the
names like
starts_with(),
ends_with(),
contains(),
matches(), or
everything()

french_fries %>%
 select(contains("e"))
A tibble: 696 x 5
time treatment subject rep buttery
<dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 0
2 1 1 3 2 0
3 1 1 10 1 6.4
4 1 1 10 2 5.9
5 1 1 15 1 0.1
6 1 1 15 2 3
7 1 1 16 1 2.6
8 1 1 16 2 4.4
9 1 1 19 1 3.2
10 1 1 19 2 0
… with 686 more rows

select()

61/96

You can use the colon, :,
to choose variables in
order of the columns

french_fries %>%
 select(time:subject)
A tibble: 696 x 3
time treatment subject
<dbl> <dbl> <dbl>
1 1 1 3
2 1 1 3
3 1 1 10
4 1 1 10
5 1 1 15
6 1 1 15
7 1 1 16
8 1 1 16
9 1 1 19
10 1 1 19
… with 686 more rows

select(): Using it

62/96

Your turn: back to the
french fries data

select() time, treatment and rep

select() subject through to rating
drop subject

03:00
63/96

Artwork by @allison_horst
64/96

mutate(): create a new variable; keep existing ones
french_fries
A tibble: 696 x 9
time treatment subject rep potato buttery grassy rancid painty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0 0 0 5.5
2 1 1 3 2 14 0 0 1.1 0
3 1 1 10 1 11 6.4 0 0 0
4 1 1 10 2 9.9 5.9 2.9 2.2 0
5 1 1 15 1 1.2 0.1 0 1.1 5.1
6 1 1 15 2 8.8 3 3.6 1.5 2.3
7 1 1 16 1 9 2.6 0.4 0.1 0.2
8 1 1 16 2 8.2 4.4 0.3 1.4 4
9 1 1 19 1 7 3.2 0 4.9 3.2
10 1 1 19 2 13 0 3.1 4.3 10.3
… with 686 more rows

65/96

mutate(): create a new variable; keep existing ones
french_fries %>%
 mutate(rainty = rancid + painty)
A tibble: 696 x 10
time treatment subject rep potato buttery grassy rancid painty rainty
<dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>
1 1 1 3 1 2.9 0 0 0 5.5 5.5
2 1 1 3 2 14 0 0 1.1 0 1.1
3 1 1 10 1 11 6.4 0 0 0 0
4 1 1 10 2 9.9 5.9 2.9 2.2 0 2.2
5 1 1 15 1 1.2 0.1 0 1.1 5.1 6.20
6 1 1 15 2 8.8 3 3.6 1.5 2.3 3.8
7 1 1 16 1 9 2.6 0.4 0.1 0.2 0.3
8 1 1 16 2 8.2 4.4 0.3 1.4 4 5.4
9 1 1 19 1 7 3.2 0 4.9 3.2 8.1
10 1 1 19 2 13 0 3.1 4.3 10.3 14.6
… with 686 more rows

66/96

Your turn: french fries
Compute a new variable called lrating by taking a log of the rating

02:00
67/96

summarise(): boil data down to one row observation
fries_long

A tibble: 6 x 6
time treatment subject rep type rating
<dbl> <dbl> <dbl> <dbl> <chr> <dbl>
1 1 1 3 1 potato 2.9
2 1 1 3 1 buttery 0
3 1 1 3 1 grassy 0
4 1 1 3 1 rancid 0
5 1 1 3 1 painty 5.5
6 1 1 3 2 potato 14

fries_long %>%
 summarise(rating = mean(rating, na.rm = TRUE))
A tibble: 1 x 1
rating
<dbl>
1 3.16

68/96

What if we want a
summary for each type?

use group_by()

69/96

Using summarise() + group_by()
Produce summaries for every group:
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 5 x 2
type rating
<chr> <dbl>
1 buttery 1.82
2 grassy 0.664
3 painty 2.52
4 potato 6.95
5 rancid 3.85

70/96

Your turn: Back to french-
fries.Rmd

Compute the average rating by subject
Compute the average rancid rating per week

03:00
71/96

french fries answers
fries_long %>%
 group_by(subject) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 12 x 2
subject rating
<dbl> <dbl>
1 3 2.46
2 10 4.24
3 15 2.16
4 16 3.00
5 19 4.54
6 31 4.00
7 51 4.39
8 52 2.72
9 63 3.48
10 78 1.94
11 79 1.94
12 86 2.94

72/96

french fries answers
fries_long %>%
 filter(type == "rancid") %>%
 group_by(time) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 10 x 2
time rating
<dbl> <dbl>
1 1 2.36
2 2 2.85
3 3 3.72
4 4 3.60
5 5 3.53
6 6 4.08
7 7 3.89
8 8 4.27
9 9 4.67
10 10 6.07

73/96

arrange(): orders data by a given variable.
Useful for display of results (but there are other uses!)
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE))
A tibble: 5 x 2
type rating
<chr> <dbl>
1 buttery 1.82
2 grassy 0.664
3 painty 2.52
4 potato 6.95
5 rancid 3.85

74/96

arrange()
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>%
 arrange(rating)
A tibble: 5 x 2
type rating
<chr> <dbl>
1 grassy 0.664
2 buttery 1.82
3 painty 2.52
4 rancid 3.85
5 potato 6.95

75/96

Your turn: french-
fries.Rmd - arrange

Arrange the average rating by type in decreasing order
Arrange the average subject rating in order lowest to highest.

02:00
76/96

arrange() answers
fries_long %>%
 group_by(type) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>%
 arrange(desc(rating))
A tibble: 5 x 2
type rating
<chr> <dbl>
1 potato 6.95
2 rancid 3.85
3 painty 2.52
4 buttery 1.82
5 grassy 0.664

77/96

arrange() answers
fries_long %>%
 group_by(subject) %>%
 summarise(rating = mean(rating, na.rm=TRUE)) %>%
 arrange(rating)
A tibble: 12 x 2
subject rating
<dbl> <dbl>
1 78 1.94
2 79 1.94
3 15 2.16
4 3 2.46
5 52 2.72
6 86 2.94
7 16 3.00
8 63 3.48
9 31 4.00
10 10 4.24
11 51 4.39
12 19 4.54 78/96

count() the number of things in a given column
fries_long %>%
 count(type, sort = TRUE)
A tibble: 5 x 2
type n
<chr> <int>
1 buttery 696
2 grassy 696
3 painty 696
4 potato 696
5 rancid 696

79/96

Your turn: count()
count the number of subjects
count the number of types

02:00
80/96

French Fries: Putting it
together to problem solve

81/96

fries_long %>%
 group_by(type) %>%
 summarise(
 m = mean(rating,
 na.rm = TRUE),
 sd = sd(rating,
 na.rm = TRUE)) %>%
 arrange(-m)
A tibble: 5 x 3
type m sd
<chr> <dbl> <dbl>
1 potato 6.95 3.58
2 rancid 3.85 3.78
3 painty 2.52 3.39
4 buttery 1.82 2.41
5 grassy 0.664 1.32

The scales of the ratings are
quite different. Mostly the
chips are rated highly on
potato'y, but low on grassy.

French Fries: Are ratings similar?

82/96

French Fries: Are ratings similar?
ggplot(fries_long,
 aes(x = type,
 y = rating)) +
 geom_boxplot()

83/96

French Fries: Are reps like each other?
fries_spread <- fries_long %>%
 pivot_wider(names_from = rep,
 values_from = rating)

fries_spread
A tibble: 1,740 x 6
time treatment subject type `1` `2`
<dbl> <dbl> <dbl> <chr> <dbl> <dbl>
1 1 1 3 potato 2.9 14
2 1 1 3 buttery 0 0
3 1 1 3 grassy 0 0
4 1 1 3 rancid 0 1.1
5 1 1 3 painty 5.5 0
6 1 1 10 potato 11 9.9
7 1 1 10 buttery 6.4 5.9
8 1 1 10 grassy 0 2.9
9 1 1 10 rancid 0 2.2
10 1 1 10 painty 0 0
… with 1,730 more rows

84/96

French Fries: Are reps like each other?
summarise(fries_spread,
 r = cor(`1`, `2`, use = "complete.obs"))
A tibble: 1 x 1
r
<dbl>
1 0.668

85/96

French Fries:
 ggplot(fries_spread,
 aes(x = `1`,
 y = `2`)) +
 geom_point() +
 labs(title = "Data is poor quality: the replicates do not look like each other!")

86/96

French Fries: Replicates by rating type
fries_spread %>%
 group_by(type) %>%
 summarise(r = cor(x = `1`,
 y = `2`,
 use = "complete.obs"))
A tibble: 5 x 2
type r
<chr> <dbl>
1 buttery 0.650
2 grassy 0.239
3 painty 0.479
4 potato 0.616
5 rancid 0.391

87/96

French Fries: Replicates by rating type
ggplot(fries_spread, aes(x=`1`, y=`2`)) +
 geom_point() + facet_wrap(~type, ncol = 5)

88/96

When to use quotes? " ',
nothing, or backtick?

89/96

When to use quotes? " ', nothing, or backtick?
Use no quotes (bare variable names) when the variable exists
Otherwise use strings

Example:
fries_long %>%
 pivot_wider(names_from = type,
 values_from = rating)

vs
french_fries %>%
 pivot_longer(cols = potato:painty,
 names_to = "type",
 values_to = "rating")

90/96

When to use quotes? " ', nothing, or backtick?
Variables with unusual names (starting with numbers, spaces, or
containing special characters like !@#$%^&*()- need to be
referenced with backticks:
data %>% select(`name with spaces`)

91/96

92/96

Lab exercise: Exploring data PISA data
Open pisa.Rmd on rstudio cloud.

93/96

Assignment 1
It will be launched later today

Instructions to appear on ED and the course website
When is the assignment due?

1st April, 2020 5pm
How do I complete the assignment?

You should complete as much of the assignment as you can by
yourself
Then once you have done as much as you can, work with your group
to

I don't have a group / I can't get in contact with my group
If you don't have a group, make sure you have �lled in this form here
(it has also been posted on ED)
I will assign everyone into a group who has �lled in the form 94/96

https://forms.gle/XJGSByKDXgKXuxZb9

Assignment 1
How do I stay in touch with my group?

Get in touch with your group and decide how you will work together
you can use zoom through Monash to create video/audio group
calls
you could create a Slack team
You can communicate via email, WhatsApp, Messenger, whatever
you all agree on

How do I submit the assignment?
You submit the assignment via ED - instructions to follow

95/96

Lab Quiz
Time to take the lab quiz.

96/96

