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Overview
What is a regression tree?
How is it computed?
Deciding when its a good �t

rmse
Comparison with linear models
Using multiple variables
Next class:

How a classi�cation tree differs from a regression tree?
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Example
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Let's predict Y using a linear model
df_lm <- lm(y ~ x, df)
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Assessing model �t
Look at residuals
Look at mean square error
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Looking at the residuals: this is bad!

It basically looks like the data!
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Looking at the Mean square error (MSE)
This is another way to assess a model, it is like taking the average
amount of error in the model.

In R code:
mse <- function(model){
  mod_aug <- augment(model)
  mod_aug %>% 
    mutate(res_2 = .resid^2) %>% 
    summarise(mse = mean(res_2)) %>% 
    pull(mse)
}

mse(df_lm)
## [1] 3.216767

MSE(y) =
( −∑i=N

i=1
yi y ̂ 

i
)2

N
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Let's use a different model: "rpart"
library(rpart)
# df_lm <- lm(y~x, data=df) - similar to lm! But rpart.
df_rp <- rpart(y~x, data=df)
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Comparing lm vs rpart: Predictions
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Comparing lm vs rpart: MSE
# linear model
mse(df_lm)
## [1] 3.216767

# rpart model
mse(df_rp)
## [1] 0.4517498

The rpart model is much lower!
We can look at the residuals plotted against the values of x to get an
idea
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Comparing lm vs rpart: residuals
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Comparing lm vs rpart: output
## 
## Call:
## lm(formula = y ~ x, data = df)
## 
## Coefficients:
## (Intercept)            x  
##      0.8806      -2.2165
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Comparing lm vs rpart: output
## n= 100 
## 
## node), split, n, deviance, yval
##       * denotes terminal node
## 
##  1) root 100 359.245100  0.8081071  
##    2) x>=0.2775916 24  16.840100 -1.4822830  
##      4) x>=0.3817438 12   3.832238 -2.0814410 *
##      5) x< 0.3817438 12   4.392090 -0.8831252 *
##    3) x< 0.2775916 76 176.745400  1.5313880  
##      6) x< 0.1426085 61  41.562800  0.9365995  
##       12) x>=-0.3999242 50  24.519860  0.7035330  
##         24) x< 0.05905847 41  11.729940  0.4807175  
##           48) x>=-0.1455513 25   5.653876  0.2281914 *
##           49) x< -0.1455513 16   1.990829  0.8752895 *
##         25) x>=0.05905847 9   1.481498  1.7185820 *
##       13) x< -0.3999242 11   1.981477  1.9959930 *
##      7) x>=0.1426085 15  25.842970  3.9501960 *
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So what is going on?
A linear model asks "What line �ts through these points, to minimise
the error"?
A decision tree model asks "How can I best break the data into
segments, to minimize some error?"
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A linear model: draws the line of best �t
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A regression tree: segments the data to reduce mean error
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Regression trees
Regression trees recursively partition the data, and use the average
response value of each partition as the model estimate
It is a computationally intense technique that examines all possible
partitions, and choosing the BEST partition by optimizing some
criteria
For regression, with a quantitative response variable, the criteria to
maximise is called ANOVA:

where , and  are the equivalent values
for the two subsets created by partitioning.

S − (S + S )ST SL SR

S = ∑( −ST yi ȳ)2 S , SSL SR
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Break down: What is  ?S = ∑( −ST yi ȳ)2
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Break down: What is  ?S = ∑( −ST yi ȳ)2
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 ? Choose a point, compare the left and rightSSL SSR
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 ? Choose a point, compare the left and rightSSL SSR
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Across all values of x?
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And if we repeated this within each split
This is how the data is split:
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We can represent these splits in a tree format:
library(rpart.plot)
rpart.plot(df_rp)
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The model predictions with the splits
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Your turn: compute a regression tree
Using the small data set, manually compute a regression tree model
for the data. Sketch the model.
d <- tibble(x=c(1, 2, 3, 4, 5), y=c(10, 12, 5, 4, 3))
d
ggplot(d, aes(x=x, y=y)) + 
  geom_???()
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Stopping rules
Its an algorithm, and it has to know when to stop.
Why did it stop at 7 terminal nodes?
Stopping rules are needed, else the algorithm will keep �tting until
every observation is in its own group.
Control parameters set stopping points:

minsplit: minimum number of points in a node that algorithm is
allowed to split
minbucket: minimum number of points in a terminal node

We can also look at the change in value of  at
each split, and if the change is too small, stop.

S − (S + S )ST SL SR
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You can change the options to �t a different model
An re-�t, the model will change. Here we reduce the minbucket
parameter.
df_rp_m10 <- rpart(y~x, data=df, 
                        control = rpart.control(minsplit = 2))
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This yields a (slightly) more complex model.
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Beyond one variable
So far we have only considered cases with one explanatory variable:

rpart(y ~ x)

When given multiple variables, a decision tree will only use variables
that provide the best splits
This means that we can identify variables that are important for
predicting an outcome.
This is called "Variable importance"
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Variable importance
After calculating all the potential splits, each variable is given an
importance value, that is typically based on the number of times it
was used in splitting, and the order in the splits
The earlier the split, the more important the variable.
These "importance values" are usually scaled to sum to 100
But the numbers themselves are arbitrary
Let's explore this in the next exercise, "10-exercise-lab-1.Rmd"
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Wrapping up
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Strengths
There are no parametric assumptions underlying partitioning
methods
Can handle data of unusual shapes and sizes
Can identify unusual groups of data
Provides a tree based graphic that is fun to interpret
Has an e�cient heuristic of handling missing values.
The method could be in�uenced by outliers, but it would be isolating
them to one partition.
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Weaknesses
Doesn't really handle data that is linear very well

Can require tuning parameters to get good model �t
Also means that there is not a nice formula for the model as a
result, or inference about populations available

E.g., You can't say things like: "For every one unit increase in
weight, we expect height to increase by XX amount".
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Next class:
Classi�cation trees
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